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The extensive heterogeneity of breast cancer complicates the precise assessment of tumour aggressiveness,
making therapeutic decisions difficult and treatments inappropriate in some cases. Consequently, the long-
term metastasis-free survival rate of patients receiving adjuvant chemotherapy is only 60%. There is a
genuine need to identify parameters that might accurately predict the effectiveness of this treatment for each
patient. Using cDNA arrays, we profiled tumour samples from 55 women with poor-prognosis breast cancer
treated with adjuvant anthracycline-based chemotherapy. Gene expression monitoring was applied to a set
of about 1000 candidate cancer genes. Differences in expression profiles provided molecular evidence of the
clinical heterogeneity of disease. First, we confirmed the capacity of a 23-gene predictor set, identified in a
previous study, to distinguish between tumours associated with different survival. Second, using a refined
gene set derived from the previous one, we distinguished, among the 55 clinically homogeneous tumours,
three classes with significantly different clinical outcome: 5-year overall survival and metastasis-free survival
rates were respectively 100% and 75% in the first class, 65% and 56% in the second and 40% and 20% in the
third. This discrimination resulted from the differential expression of two clusters of genes encoding proteins
with diverse functions, including the estrogen receptor (ER). Another finding was the identification of two
ER-positive tumour subgroups with different survival. These results indicate that gene expression profiling
can predict clinical outcome and lead to a more precise classification of breast tumours. Furthermore, the
characterization of discriminator genes might accelerate the development of new specific and alternative
therapies, allowing more rationally tailored treatments that are potentially more efficient and less toxic.

INTRODUCTION

Over the last decades, advances in systemic adjuvant therapy,
designed to eradicate the micrometastases observed at
diagnosis, have substantially improved the treatment of poor-
prognosis primary breast cancer (1,2). But conventional
clinicopathological factors remain insufficient to evaluate the
substantial prognostic heterogeneity of this disease. Therefore,
a recent consensus conference led by the US National Cancer
Institute (NCI) has recommended the enlargement of the
criteria leading to the use of adjuvant chemotherapy, which still
relies on clinical and morphological parameters and the use
of anthracycline-based regimens as standard treatment (http://
odp.od.nih.gov/consensus/). Consequently, more and more

patients are offered this therapy [with a 60% long-term
metastasis-free survival rate (1)] whose success or failure in
an individual patient cannot currently be predicted by any
clinical or morphological factor. Alternative therapeutic
strategies have been developed, and have already had
promising results in advanced disease. Among those being
tested as adjuvant treatments are new cytotoxic agents (e.g.
taxanes), new hormonal therapies and new biological agents
(e.g. trastuzumab) (3). There is clearly a crucial need to identify
parameters that might accurately predict the clinical outcome
after specific adjuvant treatment in individual patients, allowing
a rational choice between the different therapies available,
improving efficiency and reducing morbidity and cost of
treatment.
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Breast cancer is a multifactorial disease characterized by the
accumulation of numerous molecular alterations in the cells.
This complexity makes each tumour potentially distinct from
all others at the molecular and clinical levels. Prognosis and
resistance to treatment are not likely to be associated with the
disturbance of a single gene, but rather with the combined
influence of many genes. Comprehensive molecular analyses
should help identify such genes, and cDNA array technology
(4,5), which allows the analysis of the mRNA expression levels
of thousands of genes simultaneously in a sample, could be the
method of choice. Tumour cell models have suggested the
utility of this approach for investigating major issues in
metastasis (6,7) and chemoresistance (8–10). Notably, the
response of cancer cell lines to certain drugs has been shown to
be predictable by gene expression signatures (9). Several recent
studies have demonstrated the usefulness of expression profiles
for improving the classification of cancers by identifying new
subgroups of tumours within clinically and morphologically
similar groups (11–19). Such a molecular taxonomy has
suggested prognostic information for lymphomas (12), renal
cell carcinomas (20), and oesophageal (21), lung (22,23) and
breast cancers (14,24).

Our aim is to identify, within apparently homogeneous
populations of samples, new previously unrecognized tumour
classes displaying distinct clinical courses after therapy. By
analysing a limited series of primary breast carcinomas with
cDNA arrays, we previously identified, using a supervised
analysis, a predictor set of 23 genes whose expression patterns
differentiated two groups of patients with different survival
after adjuvant chemotherapy (14). To validate and further
extend these results, we present here the expression analysis of
some 1000 candidate genes from a larger, independent and
homogeneous series of poor-prognosis primary breast cancers
treated with adjuvant chemotherapy. We confirm the prognostic
classification provided by the previously identified predictor set
of 23 genes. Then we improve this predictor set and refine the
tumour classification by sorting the samples into three classes
with significantly different long-term survival.

RESULTS

Gene expression profiling of breast cancer

The mRNA from 66 different human breast cancer samples,
including 55 clinical tissue samples and 11 cell lines, were
hybridized with cDNA arrays containing about 1000 selected
genes. The overall expression patterns for these 66 samples
were analysed with hierarchical clustering and displayed in a
colour-coded matrix (Fig. 1). The clustering algorithm
classifies samples on the horizontal axis and genes on the
vertical axis, ordered on the basis of similarity of their
expression profiles. Overall similarity of breast tumours and
cell lines is shown as a dendrogram where branch length
reflects relatedness of the samples (Fig. 1A). This analysis
highlighted groups of correlated genes across correlated
samples (Fig. 1B). Some interesting gene clusters are indicated
by coloured bars on the left of Fig. 1B and are shown enlarged
in Fig. 1C. Three of these were differentially expressed between
tissue samples and epithelial cell lines. A ‘stromal cluster’ (blue

bar) and an ‘immune cluster’ (green bar) were overexpressed in
tissues overall as compared with cell lines, probably reflecting
the inflammatory component of the tumours. These clusters
were rich in genes whose expression is respectively found in
stromal cells (collagen genes COL1A1, COL6A1, proteases
MMP2, MMP3, microfibrillar-associated protein 2 MFAP2) and
in B cells (immunoglobulin genes, CD79, HLA class II, . . .),
T-cells (CD2, CD3, TRB, TRD, . . .), monocytes or macrophages
(CD14, CSF1R). The third cluster (‘proliferation cluster’, pink
bar) included several genes involved in cell proliferation such
as CDK4, ODC1, GSTP1, UBCH10, DNMT1, TUBA1, HDAC2
and PCNA (which codes for a proliferation marker used in
clinical practice). This cluster was overexpressed in cell lines
overall as compared with tissues, probably reflecting the
difference in proliferation rate between rapidly dividing cells in
culture and asynchronously proliferating cells in tumour
tissues.

Comparison between tumour tissue RNA indicated a great
heterogeneity of expression profiles, which were distinct for
each tumour. The samples were classified in three large
branches by the clustering algorithm (Fig. 1A, C). The
‘stromal’, ‘immune’ and ‘proliferation’ clusters were differen-
tially expressed in these three categories. Similar grouping was
observed using other classification algorithms such as k-means.
As expected, the ‘immune cluster’ and the ‘proliferation
cluster’ were overexpressed in estrogen receptor (ER)-negative
tumours overall as compared with ER-positive tumours, in
agreement with respectively a more abundant inflammatory
stroma and a higher proliferation index (25). Another
differentially expressed gene cluster contained the immediate-
early genes FOS, JUNB and EGR1, which code for transcrip-
tion factors involved in signalling pathways triggered by
proliferation stimuli (‘immediate response cluster’, red bar in
Fig. 1B, C). Interestingly, this cluster has previously been
observed in breast (13) and ovarian (18) cancers. Another
cluster (designated cluster I, orange bar in Fig. 1B, C) included
ESR1, which codes for the estrogen receptor (ER) several
transcription factor genes (GATA3, ILF1, XBP1, CRABP2,
SMARCA2, ELF1, BS69 and GLI3) and the anti-apoptotic gene
BCL2. Variation in expression of ESR1 mRNA correlated well
with that of the protein measured by immunohistochemistry
(IHC; concordance in 50 out of 55 samples). Finally, a cluster
(designated cluster II, brown bar in Fig. 1B, C) was highly
overexpressed in the middle group of tumours. It contained
genes coding for membrane proteins (connexin 43/GJA1,
cadherin 15, prolactin receptor PRLR, endothelin receptor
EDNRA, mucin-like hormone receptor EMR1, P-glycoprotein
1/ABCB1/MDR1, MLANA/MART1) and genes involved in the
cell cycle or apoptosis (CDKN3, DAP3, CIDEA).

Classification of breast cancer and selection of gene clusters
with potential prognostic role

As shown in Fig. 1A, classification with the whole set of genes
identified three large groups of tumours differing with respect
to their IHC ER status, but similar with respect to histological
type or clinical outcome. The absence of prognostic classifica-
tion could be due to the presence of irrelevant clusters of co-
expressed genes that exert a dominant influence upon the
clustering.

864 Human Molecular Genetics, 2002, Vol. 11. No. 8

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/11/8/863/638552 by guest on 10 April 2024



We first measured the predictive power of the expression
levels of a set of 23 discriminator genes, which we previously
identified using a supervised analysis in a study of 34 different
tumours (14). The clustering identified two groups of patients
(Fig. 2A) with significantly divergent 5-year survival rates:
53% in the left group and 87% in the right group (P< 0.05,
log-rank test). The composition of the gene clusters differen-

tially expressed in the good-prognosis group and in the poor-
prognosis group was globally similar to that of our previous
study. These results confirmed and reinforced our previous
study with a larger and independent series of tumours.

Because of some degree of residual clinical heterogeneity in
the two groups of tumours, we wanted to refine our
classification. The objective was to identify, starting from the

Figure 1. Expression patterns of 1045 cDNA clones in 66 experimental breast cancer samples. Each row represents a gene and each column represents a sample.
Genes are referenced by their HUGO abbreviation as used in ‘Locus Link’ (http://www.ncbi.nlm.nih.gov/LocusLink/). Tumour tissue samples are designated with
numbers. Each cell in the matrix represents the expression level of a transcript in a single sample relative to its median abundance across all samples and is depicted
according to a colour scale shown at the bottom. Red and green indicate expression levels respectively above and below the median. The magnitude of deviation
from the median is represented by the colour saturation. A hierarchical clustering was applied to group genes on the basis of similarity of their expression patterns
across all samples. The same clustering was then separately applied to cell lines and tissue samples to group them on the basis of the similarity of their expression
patterns. (A) Dendrogram of samples representing overall similarities in gene expression profiles across all samples. ER status measured by IHC is indicated for
each sample ( þ , positive; 7 , negative). Fatal tumours are coloured red. (B) Matrix representation of expression levels. Coloured bars to the left indicate the
locations of gene clusters of interest shown in (C), which is an expanded view of selected gene clusters named from top to bottom: cluster II, ‘stromal cluster’
(stroma), ‘immediate response cluster’ (immed.), cluster I, ‘immune cluster’ (immune) and ‘proliferation cluster’ (prolif.).
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23-gene cluster, particular gene subsets that would more
precisely predict patient survival. The 23 genes did not form an
individual cluster in the present study (data not shown): 9 were
found in or proximal to cluster I, 4 were associated with the
‘immune’ and the ‘proliferation’ clusters, and 2 were associated
with cluster II, while the remaining genes were scattered,
suggesting an heterogeneous composition of this initial
predictor set.

We first assessed whether cluster I alone (25 genes) was able
to discriminate patients with different outcome. It contained
ESR1, which encodes a known prognostic factor in breast
cancer. Clustering all tissue samples using the expression levels
of cluster I genes sorted two groups of tumours: ‘cluster Iþ ’
and ‘cluster I�’ (respectively red and green branches in
Fig. 2B). As expected, these groups differed in ESR1 mRNA
expression, but the overlap was not perfect with IHC ER status.

Figure 2. Classification of breast tumours using the 23-gene set and cluster I. The 55 breast cancer samples were clustered using expression levels of two subsets of
genes. (A) Hierarchical clustering based on the 23 previously identified discriminator genes (14). (B) Reclustering based on the cluster I genes identified in Fig. 1C.
Two large groups of tumours were separated (red branches and green branches). Boxes under the coloured matrix display the accuracy of the clustering-based
tumour classification, estimated by measuring the Euclidean distance D between each sample and the green (GD) and the red (RD) mean expression profiles
(see Materials and Methods). The difference of Euclidean distance, Ddistance (DD¼GD7RD), is plotted for each sample and reflects the proximity of its ex-
pression profile to each average profile. Samples are ordered according to their location in the original hierarchical clustering. The dotted vertical lines mark the
separation between ‘cluster Iþ ’ and ‘cluster I�’ tumour groups. Top box: Ddistance estimated with actual data. Middle box: Ddistance estimated with 10 000
randomly generated datasets (mean and standard deviation are respectively represented with black lozenges and error bars). Bottom box: frequency of membership
of each sample to the red group measured with 10 000 randomly generated datasets.
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While the ‘cluster Iþ ’ group included only IHC-positive
tumours, the ‘cluster I�’ group included both IHC-negative
and IHC-positive tumours. The overall survival was signifi-
cantly different between the two groups, with 3 deaths out of 27
patients in the ‘cluster Iþ ’ group and 14 deaths out of 28 in the
‘cluster I�’ group (P< 0.05, log-rank test). Interestingly,
patients with ER-positive ‘cluster I�’ tumours had a sig-
nificantly shorter survival than patients with ER-positive
‘cluster Iþ ’ tumours (P< 0.005, log-rank test). These results
suggest that expression profiles of ESR1-associated genes
provide different and more accurate clinical information than
the IHC status alone, possibly reflecting functional differences
in the ESR1 pathway.

Confidence for the two tumour groups revealed by clustering
was assessed by measuring the distance between each sample
and the mean profile of each group. As shown in Fig. 2B (top
box), 50 samples were closer to their original group, while 3
were closer to the opposite group and 2 exhibited the same
distance relative to the red or green groups. These 5 tumours
displayed an ‘intermediate cluster I profile’. Confidence was
further checked by using randomly generated subsets of 25
genes from a larger set of genes correlated with ESR1 (using a
correlation cut-off of 0.5 in the gene dendrogram). This
resampling allowed the estimation of the mean and standard
deviation of the differences of distances for each sample to the
red and the green mean profiles (Fig. 2B, middle box) and the
frequency of membership of each sample to the red group
(Fig. 2B, bottom box). Results showed that 51 samples were
initially well classified, while 4 ‘cluster I�’ tumours were
closer to the ‘cluster Iþ ’ group. This classification discrepancy
between clustering and distance to mean profile methods
confirmed the ‘intermediate cluster I profile’ for these 4
tumours, perhaps due to a partially functional ESR1 pathway.

While these results confirmed the utility of our initial
predictor gene set, as well as cluster I, to separate clinically
identical tumours, the two groups of tumours still displayed
some residual clinical heterogeneity (three deaths in the better-
prognosis ‘cluster Iþ ’ group).

Gene-expression-based classification of breast cancer and
survival

Focusing only on the ‘cluster Iþ ’ tumours, we identified a gene
cluster whose expression profile could separate two subgroups
of samples, one of which included the three patients who died
(Fig. 3A, B). Since this gene cluster was similar to cluster II,
cluster II genes were used to recluster the 55 tumours. The two
groups of tumours (Fig. 3C) that emerged had very distinct
expression profiles (Fig. 3C, boxes) and different clinical
outcomes (although not statistically significant: P¼ 0.11, log-
rank test). Further clustering of all 55 samples with all genes
from clusters I and II failed to identify groups with significantly
different survival (data not shown).

A complementarity between clusters I and II was found,
however, when the corresponding classifications were analysed
in a ‘2D representation’ (Fig. 4A). This representation
delineated four groups of tumours, A, B, C and D, which were
in close agreement with the clinical outcome of patients.
Overexpression of cluster I together with underexpression of
cluster II defined a group (A) with ‘good prognosis’ and no

mortality in 16 patients. Underexpression of cluster I together
with overexpression of cluster II defined a group (D) with ‘poor
prognosis’: 4 deaths out of 5 patients. The two other groups (B
and C) defined ‘intermediate prognosis’, with respectively 3
deaths out of 11 women in B and 10 out of 23 in C. Groups B
and C were merged (class B þ C), thus defining three classes.
With a median follow-up of 60 months, the difference for
overall survival (OS) was statistically significant between the
three classes (P< 0.005, log-rank test). Concerning metastases,
the difference was also statistically significant (P< 0.05, log-
rank test), with 4 relapses out of 16 in A, 15 out of 34 in B þ C
and 4 out of 5 in D. Figures 4B and C respectively show the
Kaplan Meier plots of overall survival and metastasis-free
survival (MFS) from these three classes of tumours. Although
the 5-year OS and MFS rates were 72% and 58% respectively
for the whole population, they were 100% and 75% in the first
class (A), 65% and 56% in the second (B þ C), and 40% and
20% in the last (D).

Interestingly, these three classes did not show any significant
difference with respect to follow-up or to classical breast cancer
prognostic factors such as axillary lymph node status, patient
age and menopausal status, histological type, and grade and
size of tumours. Furthermore, no such prognostic survival
classification was possible by axillary lymph node (negative
versus positive; P¼ 0.89 for OS and P¼ 0.49 for MFS, log-
rank test) or IHC ER status (negative versus positive; P¼ 0.45
for OS and P¼ 0.88 for MFS, log-rank test), both of which are
classical and strong prognostic factors of breast cancer. The
same analysis restricted to the 42 ductal tumours (11 samples in
A, 27 in B þ C and 4 in D) gave similar results, with
significantly different survivals between the three classes (data
not shown). Finally, survival differences between the three
classes remained significant (P< 0.05, log-rank test), even
when all 5 of the ‘intermediate cluster I profile’ tumours were
artificially relocated to another class (from C to A) or excluded
from analysis, further indicating the robustness of our results.

DISCUSSION

Several recent studies have suggested the usefulness of
comprehensive cDNA array-based gene expression profiles
for cancer classification (13,15–19), and some have directly
addressed the issue of prognosis (12,14,20–24). Using this
technology, we profiled a series of 55 primary breast cancers
using a set of candidate genes, the large majority of which are
directly or indirectly implicated in oncogenesis. All patients
had a poor-prognosis tumour according to the criteria in use at
our institute, and had received adjuvant anthracycline-based
chemotherapy after surgery. Today, all would receive the same
treatment according to the recent NCI consensus recommenda-
tions. Follow-up of patients was sufficiently long to consider
survival (median, 5 years), which conformed to data in the
literature for similar population and treatment (1).

The expression patterns generated delineated clinically
relevant classes of tumours. We first confirmed our initial
results with a 23-gene predictor set defined in a previously
studied cohort of patients (14). This set identified, within the
present larger and independent series of tumours, two groups
with different survival rates. Then, the analysis of more genes

Human Molecular Genetics, 2002, Vol. 11. No. 8 867

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/11/8/863/638552 by guest on 10 April 2024



and samples allowed us to dissect this predictor gene cluster
and to identify two derived gene clusters whose expression
further refined the prognostic classification. One of the clusters,
cluster I, included ESR1, a proven prognostic factor in breast
cancer (26). With respect to clinical outcome, the expression
signature of this cluster differentiated tumours better than the
IHC ER status. It also revealed the existence of at least two
molecular subtypes of ER-positive breast tumours (as measured
by IHC) with different expression profiles and survival (longer
survival in ‘cluster Iþ ’ tumours). Subtypes of ER-positive
breast tumours have recently been reported by others using

discriminator genes such as ESR1, GATA3, XBP1 or MYB, also
present in our cluster I (24). The second gene cluster was only
useful as a complement to cluster I. Their combined expression
profiles drastically improved tumour classification and allowed
the differentiation of three distinct classes with significantly
different long-term survivals (P< 0.005 for OS and P< 0.05
for MFS). Interestingly, these classes were equilibrated with
respect to clinicopathological features of samples. No such
accurate classification could have been obtained using classical
breast cancer prognostic parameters, suggesting that only gene
expression profiles can distinguish relevant classes in this

Figure 3. Cluster II and classification of breast tumour samples. (A), Hierarchical clustering of the 27 ‘cluster Iþ ’ tumours based on the whole set of genes. The
brown bar to the left indicates the location of the gene cluster shown in (B). (B), The dendrogram at the bottom lists the 27 tumours and their classification as
defined in (A). Note that the 3 patients who died are in the left group. The gene cluster responsible for this classification was compositionally very similar to cluster
II. (C) Hierarchical clustering of 55 tumours based on the cluster II genes identified in Fig. 1C. Boxes under the coloured matrix display the accuracy of the cluster-
ing-based tumour classification (for legend, see Fig. 2C).
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apparently homogeneous prognostic category of patients,
whose survival is in fact very different after chemotherapy.
These results should have important therapeutic implications,
guiding consensual poor-prognosis patients towards the type of
adjuvant therapy most likely to succeed for them. Patients with
tumours similar to class A would be candidates for standard
adjuvant treatment, whereas an alternative therapy would have
to be considered for the other patients. We must highlight
however, that molecular heterogeneity – and to a lesser extent,
clinical heterogeneity – is still present in each class, suggesting
that more subtypes of breast tumours probably exist. Five
tumours with the ‘intermediate cluster I profile’ probably
represent another subtype of breast cancer, which might be
distinguishable by profiling more samples.

The functional identities of the discriminator genes provide
insight into mammary oncogenesis and may help identify
potential therapeutic targets. Cluster I was overexpressed in the
group of tumours with the best prognosis. It included ESR1 and
several co-regulated genes. ER, a transcription factor, plays a
critical role in the mammary gland, where it regulates cell
proliferation, differentiation and motility in concert with other

signalling pathways. Several genes of cluster I are known to be
associated with ER in that they are estrogen-regulated and/or
associated with a positive ER status. Examples are mucin 1
(MUC1) (27), the proto-oncogene MYB (28), BCL2 (29) and
the cellular retinoic acid-binding protein 2 (CRABP2) (30).
Transcriptional activators of ER are also included: the
epidermal growth factor gene (EGF) (31), SMARCA2 (32),
and the RHO–GDP dissociation inhibitor a (ARHGDIA) (6).
Other transcription factors in cluster I include GATA3
(13,14,33), XBP1 (13,14) (whose mRNA expression has been
previously associated with ER status), ILF1, ELF1, BS69, GLI3
and PBX1. The search for downstream genes regulated by these
factors could help identify other genes potentially relevant to
disease outcome. It is probable that the expression of this gene
cluster reflects the functional status of the ER pathway,
clinically more significant than the IHC ER status alone. This
might explain the better survival observed for ER-positive
tumours that overexpressed this gene cluster compared with
ER-positive tumours which underexpressed it. Finally, this
cluster included two genes involved in angiogenesis: angio-
genin (ANG) (34) and thrombospondin 1 (THBS1) (35).

Figure 4. Gene-expression-based tumour classification correlates with clinical outcome. (A) Two-dimensional representation of the hierarchical clustering results
are shown in Figs 2B and 3C. The analysis delineates four groups of tumours: A, B, C and D. Black squares indicate patients alive at last follow-up visit and red
squares indicate patients who died. Three classes of patients with a statistically different clinical outcome were defined according to gene expression profiles: class
A (n¼ 16), class B þ C (n¼ 34), class D (n¼ 5). (B) Kaplan–Meier plot of overall survival of the three classes of patients (P< 0.005, log-rank test). (C) Kaplan–
Meier plot of metastasis-free survival of the three classes of patients (P< 0.05, log-rank test).
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Cluster II was overexpressed in the group of tumours with the
worst prognosis. It contained highly co-regulated genes with
diverse functions such as oncogenes, hormone receptors and
apoptotic factors. A notable feature was the inclusion of the
ABCB1 gene coding for the membrane-associated P-glycopro-
tein 1, an ATP-binding cassette chloride channel involved in
multidrug resistance and poor response to chemotherapy in
breast cancer (36). Among the other genes were the cathepsin B
protease gene (CTSB) implicated in metastasis (37), the RAS-
like GTPase TC21 (38) and CDKN3, a cell cycle regulator (39).
Interestingly, several hormone and hormone receptor transcripts
were represented (PRLR, EMR1 and GNRH1). Prolactin (PRL)
functions as an autocrine/paracrine factor that stimulates
growth and differentiation of mammary tissue after binding
to its receptor (PRLR). Although the activation of the PRL/
PRLR pathway increases cellular motility in vitro (40), the role
of PRL and PRLR in breast cancer progression remains poorly
delineated (41). GJA1, the predominant connexin in human
mammary epithelium, has been found to be overexpressed in
doxorubicin-resistant breast cancer cell lines (10). Whichever
might be the driving genes of these predictive clusters, their
prognostic accuracy and value are certainly increased by the
presence of other co-regulated genes, highlighting the utility of
large-scale molecular analyses for explaining tumour hetero-
geneity. The identification of the most relevant genes in each
class is interesting because they represent novel potential
markers of sensitivity to current anticancer drugs and/or
tumour aggressiveness. In addition, new specific therapies
targeting these genes might be developed as alternatives to
standard chemotherapy in the patients with poor outcome
(classes B þ C and D).

In conclusion, our study shows that gene expression profiles,
defined using candidate gene arrays, can identify clinically
relevant tumour subgroups, significantly contributing to the
refinement of poor-prognosis breast cancer classification. By
delineating discriminator genes, new alternative anticancer
drugs might soon be developed. The application of better
tailored and more specific therapy should lead to major
improvements in cancer management, with better chances of
success and potentially fewer side-effects. The next important
step will be the analysis of larger series of patients in
prospective clinical trials to assess the true impact of cDNA
array data on patient treatment.

MATERIALS AND METHODS

Breast tumour samples and characteristics of patients

Tumour samples were obtained from 55 women treated at the
Institut Paoli-Calmettes. These were chosen after careful
screening based on the following criteria: (i) sporadic primary
breast cancer treated with surgery followed by adjuvant
anthracycline-based chemotherapy, (ii) tumour material quickly
dissected and frozen in liquid nitrogen and stored at �160�C,
(iii) patient follow-up 48 months or more after diagnosis. In
addition to the axillary node status, four poor-prognosis criteria
were used to determine whether adjuvant chemotherapy should
be administered: patient age less than 40 years, pathological
tumour size greater than 20 mm, Scarff–Bloom–Richardson

(SBR) grade equal to 3, and negative ER status as evaluated by
IHC (with a positivity cut-off value of 1%). Women who
received chemotherapy were those either with node-positive
tumours, or with node-negative tumours and one of the poor-
prognosis criteria if non-menopausal or two criteria if
menopausal. After surgery, all patients received comparable
regimens of chemotherapy containing conventional doses of
anthracycline every 21 days for six cycles. All tumour sections
were de novo reviewed by a pathologist (J.J.) prior to analysis.
All samples contained more than 50% tumour cells. Tumours
were infiltrating adenocarcinomas, including (according to the
WHO histological typing) 42 ductal carcinomas, 5 lobular, 5
mixed, and 3 medullary. Other main characteristics of patients
are listed in Table 1.

Breast cancer cell lines

All breast-cancer-derived cell lines were obtained from the
American Type Culture Collection – except BrCa-MZ-01 and
BrCA-MZ-02, which were kind gifts from Dr V.J. Möbus (Ulm,
Germany) – and were grown as recommended.

Complementary DNA array production

The 1045 human cDNA clones used in the study were obtained
from the IMAGE consortium. These were chosen to represent
genes with proven or suspected roles in cancer, including genes
involved in transcription, the cell cycle, cell adhesion, invasion,
angiogenesis and chemoresistance (the complete list is
available at http:/tagc.univ-mrs.fr/pub/Cancer/). The use of
control clones, PCR amplification and robotical spotting of
PCR products onto Hybond-Nþ membranes (Amersham) were
done as described previously (42).

Table 1. Clinical characteristics of patients

Characteristics All patients (n¼ 55)

Median age (years) 56
Menopausal status (n):

Postmenopausal 30
Premenopausal 25

Axillary lymph-node metastasis (n)a:
Negative 11
Positive 43

Pathological tumour size (pT) (n):
pT1 20
pT2 27
pT3 8

SBR grade (n)b:
I and II 29
III 24

Estrogen-receptor status (n):
Positive 35
Negative 20

Median follow-up (months) 60
Metastatic relapse (n) 23
Death (n) 17

aNot available in 1 patient.
bNot available in 2 patients.
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RNA extraction, hybridizations and data acquisition

Total RNA was extracted from frozen tumour samples and cell
lines by standard methods (43). RNA integrity was controlled
by 28S northern blots before labelling. Hybridizations of
cDNA arrays were done with radioactive [a-33P]dCTP-labelled
probes made from 5 mg of total RNA from each sample
according to described protocols (http:/tagc.univ-mrs.fr/pub/
Cancer/). After washes, arrays were exposed to phosphoima-
ging plates, which were then scanned with a FUJI BAS 1500
machine.

Data analysis and statistical methods

Signal intensities were quantified, normalized for the amount of
spotted DNA (44) and the variability of experimental
conditions, and log-transformed (42). Average-linkage hier-
archical clustering was then applied to investigate relationships
between samples and relationships between genes. We used the
Cluster program (with Pearson correlation as similarity metric)
and displayed results with the TreeView program (45).

The accuracy of tumour classification defined by hierarchical
clustering was assessed. We determined the average expression
profile of each tumour group defined by the original
classification (green and red groups in Figs 2B and 3C) and
measured the Euclidean distance D between each sample
and the green (GD) and the red (RD) mean expression profiles.
The difference between these distances (Ddistance, DD¼

GD7RD) reflected the proximity to average profiles (DD was
positive for samples closer to the red profile and negative for
samples closer to the green profile). Then, we used the intrinsic
noise in the experimental data to estimate confidence levels for
DD and the probability of each tumour belonging to each
group. For every gene cluster tested, we retained a larger set of
genes that contained, in addition to the original genes, their
neighbour genes belonging to dendrogram branches with a
correlation cut-off of 0.5. 10 000 datasets of the same size as
the initial selected cluster were randomly generated from this
new set, allowing, for each sample, the computation of DD
(mean and standard deviation) and the frequency with which it
was found closer to the red mean profile.

Survival analysis was done with the SPSS software (version
10.0.5). The primary endpoint was the overall survival (OS)
measured from the time of diagnosis until the date of the last
follow-up visit or cancer-related death. Metastasis-free survival
(MFS) was the secondary endpoint and was measured in the
same way until the date of the first distant metastasis. Survivals
were estimated with the Kaplan–Meier method and compared
between groups using the log-rank test (46). Data concerning
patients who were alive or without metastatic relapse at last
followup were censored. A P-value of less than 0.05 was
considered significant.
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