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The human genome is a mosaic structure on many levels: there exist cytogenetic bands, GC composition
bands (isochores) and clusters of broadly expressed genes. How might these inter-relate? It has been
proposed that to optimize gene regulation, housekeeping genes should concentrate on transcriptionally
competent chromosomal domains. Prior evidence suggests that regions of high GC and R bands are
associated with such domains. Here we report that broadly expressed genes cluster in regions of high GC,
and in R and lightest Giemsa bands. This is not only a confirmation of the adaptive hypothesis, but is also the
first direct systematic evidence of a general interdependence of expression patterns with base composition
and chromosome structure.

INTRODUCTION

What determines gene order in the human genome? Genes are
not randomly distributed along chromosomes. We have recently
shown that they are arranged according to their breadth of
expression: broadly expressed genes tend to cluster (1),
although factors that account for this clustering remain
unknown. In prokaryotes, genes related to a particular function
are clustered in operon structures and their expression is
co-regulated. While in eukaryotes co-regulatory gene units
have been observed, in some cases, as in the case of HOX
genes, there is no evidence for these to be a common case.

Unlike prokaryotes and other invertebrates, mammalian
genomes show great variability in their base composition (2).
Several hypotheses have been proposed to explain this pattern.
Some authors favouring a selectionist explanation
argue that high contents of G þ C in some regions of the
genome help to preserve chromatin structure in thermo-
regulated organisms (2). Theories of mutational processes to
explain base compositional differences have also been
proposed (3). Nevertheless, the reason for the heterogeneity
in base composition is still a matter of debate. How, if at all, do
the compositional mosaic structure of the genome and the gene
expression patterns interact?

If selectively neutral processes determine both the mosaic
structure of chromosomes and the clustering of broadly
expressed genes, then we expect no relationship between
regional composition and functional properties of the genes
such as their expression patterns. On the other hand, regions

differing in their base composition may be differently suitable
for transcription. If local chromatin characteristics affect access
to the transcription machinery (4–6), then we expect genes
expressed in many cell types to be concentrated in transcrip-
tionally competent regions, even when gene density effects are
corrected for.

It is well known that chromosomal regions of high GC
exhibit higher gene densities (7). These regions also contain a
higher density of CpG islands (8). Because it has been reported
that housekeeping genes—in contrast to tissue-specific genes—
are always associated with CpG islands (9), this has led to the
widely accepted notion that housekeeping genes are preferen-
tially located in regions of high GC (2). However, a detailed
analysis found that the association between CpG islands and
the expression patterns of genes is more complex: 10% of
housekeeping genes are not associated with CpG islands, while
this fraction varies for tissue-specific genes between GC-poor
and GC-rich regions (10). Furthermore, the latter study
concluded that housekeeping genes are slightly more prevalent
in GC poor regions, once gene density has been accounted for.
Thus, this systematic study (as well as two others from the same
group) (11,12) contradicts widely held beliefs on the associa-
tion between expression breadth and regional nucleotide
composition. However, these reports measured expression
breadth from expressed sequence tag (EST) data, and GC
content from coding sequences; both are not ideal measures.
Thus, the question of how housekeeping genes are distributed
in relation to tissue specific genes in the human genome is
currently not fully resolved.
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RESULTS

Our aim is to evaluate whether such a relation between regional
base composition and gene expression exists. Until recently it
was not possible to systematically address this question due to
the lack of reliable quantitative expression data necessary to
discriminate expression rate from expression breadth. Serial
Analysis of Gene Expression (SAGE) technology (13) allows
quantitative identification of genes expressed in a particular
tissue. To examine whether gene order in the genome is related
to base composition variation, we compared expression
patterns of over 10 000 autosomal human genes across 19
normal tissues with the GC content of their introns. It has
recently been shown that under some experimental conditions,
SAGE libraries may tend to over-represent GC rich sequences
(14). As this could bias our results, all analyses are based on a
curated dataset, which excludes libraries that showed a bias
towards GC rich sequences (see Materials and Methods).

There appear to be two types of models that predict a
correlation between local chromatin characteristics and expres-
sion pattern. The first type assumes that chromatin remodelling
acts like a switch, either allowing or preventing the transcrip-
tion of genes. This would predict a correlation of GC and
banding pattern with expression breadth (the number of tissues
where a gene is expressed), but not with measures of
expression rate. The second type of model assumes that
chromatin remodelling dominantly affects the rate of transcrip-
tion, e.g. by ensuring that highly expressed genes (be they
tissue-specific or broadly expressed) are in open chromatin.
This model would predict an association of chromatin
characteristics with peak expression rate, but not necessarily
with expression breadth. To distinguish between these two
models, we report results for both of these measures (1):
breadth of expression and peak rate of expression. We also
performed corresponding analyses for other measures of
expression rate (mean across all tissues, mean across tissues
with positive expression, standard deviation over mean across
all tissues), although we are not aware of a model that would
predict a direct effect on these measures. All measures of
expression rate are highly correlated, and all results are in
qualitative agreement with those presented here for the peak
rate (data not shown).

Analysis of expression breadth and local nucleotide compo-
sition (GC) reveals a highly significant correlation (r2

¼ 0.24,
P< 10�5; for an example see Fig. 1). A similar although
weaker pattern appears when comparing GC content and the
logarithm of the expression rate (r2

¼ 0.05, P< 10�5). To
account for the great degree of variability in expression patterns
at a one-gene resolution, these correlations were assessed after
averaging all variables over 15 neighbouring genes.
Furthermore, after sorting individual genes according to their
surrounding DNA composition into GC categories of 5%
width, mean expression breadth and log(rate) both have a
strikingly strong linear relationship with base composition
(r2
¼ 0.89, P< 0.0005; r2

¼ 0.83, P< 0.005, respectively;
Fig. 2). We previously reported a limited although significant
correlation between expression patterns and base composition
on a one-gene basis (1). Correlation coefficients rise as the
number of genes per window is increased (Fig. 3; all
correlations are highly significant, P< 0.0005). Thus, while

much of the variation in expression breadth and rate is based in
the properties of individual genes, a large fraction of the long-
scale variability (up to almost 50%, see Fig. 3) is predicted by a
related variation in GC composition. This strongly supports the
notion that isochores are real and may have some functional
importance.

Our earlier analyses showed that clustering of genes was
related to expression breadth and that the previously described
clustering of highly expressed genes (15) is a by-product of the
dependence of rate on breadth (1). Accordingly we found that
the correlation of log(rate) with GC content fades out when we
look at residuals from the breadth correlation. In contrast, when
examining the residuals from breadth on log(rate), the
correlation with GC remains unchanged (Table 1). These
results provide evidence for a strong relationship between
breadth of expression of a gene and the base composition at the
genomic region where it is situated.

In contrast to the above results, some previous analyses have
reported a small negative correlation between local GC content
and the breadth of expression estimated from expressed
sequence tag (EST) data (10–12). To reconfirm that our results
are not an artefact of the SAGE method, we therefore repeated
our analysis using the breadth of expression obtained from the
ESTs contained in the UniGene database (16). In qualitative
agreement with the SAGE analysis in Figure 3, we found a
highly significant positive correlation between intron GC and
EST breadth of expression, which increased with the number
of neighbouring genes averaged (Supplementary Material
Figure A). The discrepancy between our results and previous
studies appears to be caused mainly by the previous studies
examining individual genes rather than regional averages.
Another contribution to this difference may stem from the use
of (total or third site) coding sequence GC instead of intron
GC; coding region and intron GC appear to measure different
genomic properties. However, we found qualitatively similar
results for intergenic GC, intron GC excluding repetitive
sequence and transcript GC (data not shown). It has been
suggested that a discrepancy between SAGE and EST results
might be due to a differential decay of SAGE tags with
different GC (12). This appears not to be relevant: there is
hardly any correlation between SAGE tag GC and expression
breadth in our curated data set (r2

¼ 0.0001).
GC content has been associated with CpG density. Given that

housekeeping genes tend to be located near CpG islands
(10,17), the concentration of housekeeping genes was expected
to be higher in GC rich regions (2). This suggests a possible
explanation for our findings, i.e. the correlation between
expression breadth and GC content might simply reflect the
higher CpG density rather than GC content per se. However,
we found very similar results when correlating expression
breadth with intron GC excluding CpG islands (r2

¼ 0.79 for
5% bins of GC). Thus, CpG island preference alone fails to
explain the concentration of housekeeping genes in GC rich
regions. From the above we might presume that isochores are,
to a very large extent, regions of comparable breadth of
expression.

The mammalian genome is also heterogeneous in its
structure. Giemsa staining of metaphasic chromosomes reveals
a banding pattern. The Giemsa bands are related to chromatin
compaction and distribution of chromosomes inside the
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nucleus, where darker and more compacted regions tend to
occupy the nuclear periphery (4). Moreover, band types have
been correlated with base composition: GC-poorest DNA
segments are preferentially located on the most intensely
staining G bands, while a subset of the R bands contains the
GC-richest isochores (18,19). Therefore we asked whether
clustering of housekeeping genes in GC-rich regions relates to
these chromosome bands. Indeed, we found that broadly
expressed genes are preferentially located in the lightest
staining G and R bands (Fig. 4), which contain the most GC-
rich segments. Overall 81% of housekeeping genes (expressed
in 13 or more tissues) are in one of these two bands. Gene
density is generally higher in these two bands (19,20);
nonetheless, controlling for gene density we still find
enrichment of broadly expressed genes in the R and lightest
staining G bands (747 genes compared with 687 expected;
P¼ 0.023 from w2 test).

The observed mean expression breadth decreases much
steeper from R- to dark G-bands than predictions derived
from either total band GC or from the intron GC of the
genes under study (Fig. 4). This suggests that at least part of
the correlation between banding patterns and expression
breadth is independent of GC. Consequently, examining the
regression residuals of expression breadth versus intron GC
for individual genes, we find that genes are not randomly

distributed across cytogenetic bands (ANOVA; P¼ 0.038
from F-test). Thus, broadly expressed genes show indepen-
dent preferences for regions of high GC as well as for the R
and lightest staining G bands.

DISCUSSION

Our results provide the first direct systematic evidence of a
general relationship between expression patterns and chroma-
tin structures and base composition. This however leaves
unresolved the issue of the evolution of isochores. Might GC
content evolve as a by-product? Or is it necessary that regions
of broad expression have a high GC content, i.e. is the GC
content itself under selection? Assuming that housekeeping
genes tend to concentrate in regions of open chromatin in
order to facilitate transcription (4), our data could be
consistent with two models that explain the higher GC
content in DNA segments containing housekeeping genes. In
the first model, GC content is selectively driven since GC-rich
DNA tends to be open and taken to the centre of the nucleus.
Alternatively, high GC content could, via biased gene
conversion, be a by-product of open chromatin being more
prone to recombination.

Both models are consistent with the correlation between
recombination rates and base composition (21–25). In the
former model this would be a side consequence of the fact
that open chromatin is GC rich and open chromatin may be
prone to recombination. In the latter model, the GC content is

Figure 1. Expression breadth (black dots) and intron GC (grey diamonds) for genes on chromosome 11. Each point represents the average of GC content /breadth
for 15 neighbouring genes.

Table 1. Correlations for rate and breadth with base composition; 15-gene
averages

r r2 P

Breadth versus log(rate) 0.43 0.19 <10�5

Breadth versus GC 0.49 0.24 <10�5

Residuals of breadth¼
a þ b� log(rate) versus GC

0.43 0.19 <10�5

Log(rate) versus GC 0.23 0.05 <10�5

Residuals of log(rate)¼
a þ b� breadth versus GC

0.02 0.0005 0.58

Figure 2. Expression breadth and log(rate) averaged over contiguous intron GC
windows of 5% width. The correlation coefficients give r2

¼ 0.89 (breadth) and
0.83 (rate), respectively.
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caused by recombination. Therefore both models are also
consistent with a correlation between breadth and recombina-
tion. Indeed we find such pattern, although the correlation is
extremely weak, possibly due to the low resolution of the data
available (r2

¼ 0.0034, P< 10�4 for 15-gene averages;
recombination data from 25). However, we can imagine a
discriminating prediction. Under the second model, all genes
expressed exclusively in germ cells just prior to chiasmata
formation are prone to recombination and hence to high GC
content, while the former predicts that, as such genes are
tissue specific, they need not be GC rich. When SAGE
libraries for these cell types become available, the test could
be performed.

How might the association between expression patterns and
local chromatin characteristics shown above be tested experi-
mentally? The above model predicts that when genes are
inserted into a non-native chromosomal environment together
with their promoter regions, their expression pattern should
depend on local GC content and cytogenetic banding pattern. It
is indeed well known that randomly inserted transgenes are
often not transcribed. In agreement with the competent
chromatin model, transgene expression—at least in the case
of globin genes—can be rescued with locus control region
elements that modify chromatin structure (26). By a systematic
examination of the local chromatin characteristics and the
expression pattern for a large number of randomly located
transgene insertions, the predictions of our model can thus in
principle be tested. Unfortunately, currently available data is not
of adequately high resolution to address this issue (F. Grosveld,
personal communication), and we have to leave this test for
future work.

In summary, our results are consistent with gene location
being an adaptive property related to regional base composition
and chromosome structure (2), where selective pressures favour
the concentration of housekeeping genes in genomic regions
with particular structural properties, most probably to facilitate
access to transcription machinery (4). In accord with this
picture, it has been shown that actively transcribed chromatin is
predominantly located within the nuclear interior comprising
early replicating R bands, which contain the GC richest and
gene richest domains (27). The null model, in which genes in
the genome are randomly assorted with respect to their
expression, is no longer tenable.

MATERIALS AND METHODS

The Serial Analysis of Gene Expression (13) (SAGE) data was
obtained from SAGEmap (28) (ftp://ncbi.nlm.nih.gov/pub/
sage). The dataset was curated to avoid possible GC biases in
SAGE libraries following the approach of Margulies et al. (14);
we removed 14 libraries with mean tag GC> 0.5. The resulting
SAGE tag/tissue data set was based on 40 libraries representing
19 tissues. Tag counts were converted to relative values (cpm,
counts per million) after joining all libraries representing the
same tissue type. If tags were found only once in one tissue
type, we discarded the observation as a likely sequencing error.
This data was cross-linked to the mRNA sequences in RefSeq
(ftp://ncbi.nlm.nih.gov/refseq), by extracting the 30-most NlaIII
SAGE tag for each mRNA. If the same tag occurred more than
once in RefSeq, all corresponding genes were excluded. To be
conservative, the gene set was further restricted to those
sequences who’s tag was also reported by NCBI as reliable for
the corresponding UniGene cluster (16) (UniGene build #155,
ftp://ncbi.nih.gov/pub/sage/map/Hs/NlIII/SAGEmap_tag_ug-
rel.zip). For the remaining genes, we calculated breadth of
expression as the number of tissues with positive expression.
For genes expressed in at least one tissue, we also calculated
the peak rate of expression (maximum cpm across tissues). As
with all forms of expression assay, the SAGE data employed
here will inevitably miss some genes expressed at low levels.
However, this is not likely to unduly bias our results: as we
have demonstrated earlier (1), controlling for rate of expression
hardly affects regional variation in expression breadth.

Of the genes with valid expression information, 10774 could
be located unambiguously on the June 2002 UCSC genome
assembly (29) (ftp://genome-archive.cse.ucsc.edu). Gene posi-
tion was defined as the midpoint between 50 and 30 ends of the
transcribed sequence.

For each gene, we extracted the coding sequence from the
RefSeq mRNA. We also extracted transcripts (containing both
exon and intron sequences, and including information on
repetitive DNA) from the genomic data at the UCSC web site.
Owing to sequencing errors, mistakes in the assembly, or mis-
annotations, intron sequences may be wrongly identified from
this kind of data. To ensure proper identification, we compared
the coding part of the corresponding exons against the
RefSeq sequences. Genes were excluded if we found a length
difference or if an internal stop codon occurred in the genomic

Figure 3. Pearson’s r for the correlation between intron GC and expression
breadth and rate, for sliding averages over N neighbouring genes.

Figure 4. Mean expression breadth of genes in differently staining cytogenetic
bands and predictions from intron GC and from total band GC. Error bars show
standard errors of the means.
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coding sequence. Nucleotide composition was measured as the
guanine and cytosine (GC) fraction. Intron GC was calculated
for 8128 genes with total intron length >100 bp. For 7986
genes with total intron length >500 bp, we also calculated
intron GC excluding CpG islands. CpG islands were defined as
regions of at least 200 bp, with mean GC> 0.5, and CpG
observed/CpG expected >0.6 (10).

Recombination data (25) and cytogenetic band positions
(based on FISH data) (30) were also obtained from the UCSC
web site. Band positions are imprecise by up to several 100 kb
or even more. When including only genes at least 1 Mb away
from start and end of their cytogenetic band, results are
qualitatively unchanged (data not shown).

To reconfirm that the observed patterns are not due to any
remaining bias of the SAGE data, we also examined the
correlation between nucleotide composition and local breadth of
expression obtained from expressed sequence tag (EST) data.
Each UniGene group not only contains the RefSeq mRNA
sequence, but also all ESTs believed to map to the same gene. We
used these to cross-link genes to 622 EST libraries constructed
from normal tissue samples, each containing at least 50 ESTs.
This resulted in a data set of 8763 genes, each known to be
expressed in at least one out of 73 normal tissues (16 prenatal and
57 postnatal). We calculated breadth of expression as the number
of tissues with positive expression information.

For all correlations, r is Pearson’s coefficient. Significance
levels were estimated from 10 000 random pairings of the raw
data value pairs: P¼ (1 þ number of random pairings with
smaller or equal r2)/(1 þ number of random pairings). Corre-
lations and regressions for expression rate were calculated after
taking the logarithm.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.
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