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Common diseases such as type 2 diabetes and coronary heart disease result from a complex interplay of
genetic and environmental factors. Recent developments in genomics research have boosted progress in
the discovery of susceptibility genes and fueled expectations about opportunities of genetic profiling for
personalizing medicine. Personalized medicine requires a test that fairly accurately predicts disease risk,
particularly when interventions are invasive, expensive or have major side effects. Recent studies on the pre-
diction of common diseases based on multiple genetic variants alone or in addition to traditional disease risk
factors showed limited predictive value so far, but all have investigated only a limited number of suscepti-
bility variants. New gene discoveries from genome-wide association studies will certainly further improve
the prediction of common diseases, but the question is whether this improvement is sufficient to enable
personalized medicine. In this paper, we argue that new gene discoveries may not evidently improve the
prediction of common diseases to a degree that it will change the management of individuals at increased
risk. Substantial improvements may only be expected if we manage to understand the complete causal mech-
anisms of common diseases to a similar extent as we understand those of monogenic disorders. Genomics
research will contribute to this understanding, but it is likely that the complexity of complex diseases may
ultimately limit the opportunities for accurate prediction of disease in asymptomatic individuals as unravel-
ing their complete causal pathways may be impossible.

INTRODUCTION

Genome-wide association studies are rapidly unraveling
the role of genetic factors in the pathogeneses of common
diseases (1). One of the major promises is that these advances
will lead to personalized medicine, in which preventive and
therapeutic interventions for complex diseases are tailored to
individuals based on their genetic profiles (2,3). Personalized
medicine already exists for monogenetic disorders such as
Huntington disease, phenylketonuria (PKU) and here-
ditary forms of cancer, in which genetic testing is the basis
for informing individuals about their future health status and
for deciding upon specific, often radical interventions such
as lifetime dietary restrictions and preventive surgery. Yet,
the etiology of complex diseases is essentially different from
that of monogenic diseases, and hence translating the
new emerging genomic knowledge into public health and

medical care is one of the major challenges for the next
decades (4,5).

An essential prerequisite for personalized medicine to
become feasible is a predictive test or prediction model
that can discriminate between individuals who will develop
the disease of interest and those who will not. The level
of discrimination that is required in clinical care and
public health applications depends, among other things, on
the goal of testing, the burden of disease, the costs of
disease, the availability of (preventive) treatment and the
adverse effects of false-positive and false-negative test
results. In this paper, we review recent studies that have
examined the prediction of common diseases based on mul-
tiple genetic variants alone or in addition to traditional
disease risk factors, and we discuss factors that determine
the prospects of personalized medicine including new
discoveries from genome-wide association studies, classical

�To whom correspondence should be addressed at: Department of Epidemiology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000
CA Rotterdam, the Netherlands. Tel: þ31 107044232; Fax: þ31 107044657; Email: a.janssens@erasmusmc.nl

# The Author 2008. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Human Molecular Genetics, 2008, Vol. 17, Review Issue 2 R166–R173
doi:10.1093/hmg/ddn250

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/17/R
2/R

166/2527081 by guest on 10 April 2024



knowledge of the heritability and the etiologic complexity of
common diseases.

GENETIC TESTING IN COMMON DISEASES

The genetic origin of common complex or multifactorial dis-
eases differs essentially from that of monogenic disorders.
Monogenic disorders, such as Huntington disease, PKU and
hereditary cancers, are completely or predominantly caused
by DNA variations in one single gene, and hence, carriers of
mutations typically have distinctly higher disease risks than
non-carriers (Fig. 1A). These substantial differences in absol-
ute risks of disease warrant differential preventive and thera-
peutic strategies for different genotype groups, if available.
Complex diseases result from the joint effects of multiple
genetic and environmental causes, with each factor having
only a minor contribution to the occurrence of disease. Conse-
quently, risks of disease differ only marginally between
carriers and non-carriers of risk variants of one single suscep-
tibility gene (Fig. 1B), and prediction of disease based on a
single genetic variant is considered not informative (6,7).
Genome-based prediction of complex diseases will imply the
simultaneous testing at multiple genetic loci, known as
genetic profiling.

The predictive value of genetic profiling has been investi-
gated in a few empirical studies to date, and this number is
steadily increasing. These studies, in type 2 diabetes, coronary
heart disease, myocardial infarction and age-related macular
degeneration (AMD) generally showed limited predictive
value so far (Table 1), with the exception of the five suscepti-
bility variants involved in AMD and the seven variants in
hypertriglyceridemia (8–17). While the predictive value in
these two studies may have been overestimated because they
were performed in hyperselected populations not representa-
tive for clinical practice, comparing individuals with end-stage
AMD with those without eye abnormalities (8,18) and individ-
uals with hypertriglyceridemia with normolipidemic individ-
uals (11), prediction of these disorders is deemed promising
as the individual variants have very strong effects compared
to what is generally seen in common diseases.

The genetic profiles that have been investigated empirically
to date included only a small number of mostly weak suscep-
tibility variants and they, therefore, are not yet useful for the
application in clinical medicine or public health. Simulation
studies have shown that the predictive value of a larger
number of genes (up to hundreds) can theoretically attain
the same level as that of traditional risk factors predicting car-
diovascular disease (19,20), but it may not evidently become
much better. There is a ‘natural’ limit to the predictive value
of genetic profiling as common diseases that are only partly
influenced by genetic factors that can never be perfectly pre-
dicted by genetic testing. In fact, the maximum predictive
value in terms of the area under the receiver operating charac-
teristic curve (AUC, see table legends for details) that can be
attained for genetic profiling is determined by the heritability
and the prevalence of the disease (19). For applications in
health care, this means that genetic profiling may become
useful for the identification of individuals at increased risk
of disease to the same extent as traditional risk factors do,
but that its predictive value may not be high enough for
decisions about invasive, irreversible and expensive interven-
tions or for presymptomatic diagnosis.

Recent simulation studies have also demonstrated some
interesting features of genetic profiles that explain why the
predictive value of a larger number of multiple weak suscepti-
bility variants may not easily become much better (19,21–23).
First, when multiple genes are considered simultaneously, one
typically finds that all individuals in a population carry at least
one or more risk genotypes, even those persons with a lower
than average risk of disease (bar chart in Fig. 1C). Second,
the more risk genotypes the higher the risk of disease, but sub-
stantial variation in disease risk may be seen between individ-
uals with the same number of risk genotypes resulting from
differences in effect sizes between risk genotypes (scatterplot
in Fig. 1C). And third, in sharp contrast to genetic testing for
monogenic diseases, most individuals have profiles that are
associated with disease risks that are only slightly higher or
lower than the average risk in the population (combination
of bar chart and scatter plot, Fig. 1C). Figure 1C shows that
also individuals who have e.g. 10 risk genotypes may have

Figure 1. Disease risks associated with single genetic variants and genetic profiles. Disease risks for TCF7L2 were based on odds ratios from a recent
meta-analysis (38) using a population risk of type 2 diabetes of 33% (dashed line) (39). Disease risks for the complex diseases example were based on simulated
data assuming a population risk of disease of 10% (dashed line), frequencies of the risk genotypes varying between 1 and 60% and odds ratios varying from 1.05
to 2.0. The bars in the scatterplot represent the frequency distribution of the number of risk genotypes. The example and the simulation strategy have been
described previously (19,40).

Human Molecular Genetics, 2008, Vol. 17, Review Issue 2 R167

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/17/R
2/R

166/2527081 by guest on 10 April 2024



disease risks that are lower than the average risk in the popu-
lation. This is explained by the fact that individuals who have
10 risk genotypes out of 40 variants tested also have 30 ‘pro-
tective’ genotypes that decrease their risks. Whether the risk
associated with a genetic profile is higher or lower than
average depends on the extent to which the risk increase by
the risk genotypes outbalances the risk decrease by the protec-
tive genotypes.

IMPROVING DISEASE PREDICTION

While testing multiple susceptibility variants alone may not
yield perfect prediction of complex diseases, the question
remains whether it will improve the prediction of disease
beyond classical risk factors. Although the construction of pro-
files consisting of genetic and environmental risk factors
appears an obvious solution, studies so far showed that genetic
factors do not substantially improve the prediction of type 2
diabetes, coronary heart disease and prostate cancer, but again
the number of genes investigated was small (Table 2)
(9,12,15,16,24–27). However, from a theoretical perspective,
it can be argued that also a large number of genes will unlikely
have substantial added predictive value over traditional risk
factors if these variants predispose the risk factors. For instance,
genes associated with cardiovascular disease may also be
involved in intermediate outcomes as dyslipidemia or hyperten-
sion or even smoking (26,28). According to the basic principles
of epidemiological research, genetic variants involved in
intermediate factors will not remain significant when they
are entered in a regression model together with these intermedi-
ate factors (Fig. 2). Genetic variants may improve disease
prediction beyond traditional risk factors when they are involved
in unknown pathways or in pathways with unmeasurable
intermediate factors. New yet unknown pathways may be
more likely for some diseases than for others. A critical but
not unlikely note is that gene discoveries may also identify
novel etiological pathways and novel intermediate biomarkers,
which consequently may be stronger predictors of disease than
the genetic variant that led to its identification.

COMPLETE CAUSAL MECHANISMS

One of the paradigms in complex genetics is that the genetic
prediction of common diseases can be substantially improved
if we are able to identify genetic variants with strong effects,
either on their own or in interaction with other variants or with
environmental factors, i.e. gene–gene or gene–environment
interaction. Yet, perfect prediction of disease, e.g. comparable
to that of the genetic test for Huntington Disease, may only be
achieved if we are able to understand the essential genetic and
environmental factors in the causal mechanisms of the disease,
to a similar extent as we understand the causal mechanism that
leads to Huntington Disease.

Unraveling the underlying causal pathways implies that we
are to understand why someone developed a certain disease.
Rothman and Greenland (29) define a complete causal mech-
anism or a sufficient cause of disease as a set of minimal
conditions and events that inevitably lead to disease, with
‘minimal’ implying that all component causes need to beT
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present for the disease to develop. When only one causal
pathway is involved, the risk of disease is 100% when all
component causes are present, and 0% when one or more
causes are absent. Chance or randomness does not exist
in the Rothman and Greenland models of complete causal
mechanisms.

Figure 3 gives schematic diagrams for complete causal
mechanisms of monogenic and complex diseases. Figure 3A
presents a sufficient cause diagram for Huntington disease,
in which there is only one causal factor. CAG extensions in
the huntingtin gene are a complete and sufficient cause for
the development of the disease despite the fact that there
may be genes that modify age of onset. Figure 3B presents a
complete causal model for PKU, which only occurs when
homozygous carriers of mutations in the PAH gene are on a
normal diet that includes phenylalanine. From a statistical per-

spective, this model serves as a typical example of gene–
environment interaction.

For common diseases that result from multiple genetic and
environmental causes, the complete causal mechanisms are by
far more complex (Fig. 3C–F). Not only will they consist of a
large number of different component causes, but a specific
disease may also result from different causal mechanisms.
For example, a complex disease may be caused by the pre-
sence of four different risk variants in different genes (G1 to
G4 in Fig. 3C), but if one of the risk variants is absent (G4)
then still the disease may inevitably occur when instead four
other genetic risk variants (G5 to G8) and an environmental
risk factor (E1) are present (Fig. 3D). Thus, for complex dis-
eases, there are not one but many distinct combinations of
risk factors that lead to disease development, with major
single risk factors emerging in multiple combinations.

Table 2. Recent studies on the improvement of clinical prediction by testing multiple susceptibility genes

Disease Clinical risk factors Variant
selectiona

Genetic variants AUC
before

AUC
after

Reference

Cardiovascular
disease

Age, sex, family history of myocardial
infarction, low density lipoprotein, high
density lipoprotein cholesterol,
triglycerides, systolic blood pressure,
diastolic blood pressure, diabetes
mellitus, body mass index, smoking,
C-reactive protein, lipid-lowering
therapy, antihypertensive treatment

9 (out of 11)
established
SNPs in 9
genes

APOB rs693, APOE cluster rs4420638,
HMGCR rs12654264, LDLR
rs1529729, PCSK9 rs11591147,
ABCA1 rs3890182, CETP rs1800775,
LIPC rs1800588, and LPL rs328

0.80 0.80 (26)

Coronary heart
disease

Age, triglycerides, cholesterol, systolic
blood pressure, smoking

4 (out of 12) UCP2 G(2866)A, APOE e2/3/4, LPL
D9N, APOA4 T347S

0.66 0.70 (9)

Coronary heart
disease: in
whites

Age, systolic blood pressure, total
cholesterol, high density lipoprotein
cholesterol, diabetes, use of
antihypertensive medication, smoking

11 (out of 116) VAMP8, PALLD, KIF6, MKI67,
MYH15, Loc646377, HPS1, SNX19,
ADAMTS1 (2x), ADRB3

0.76 0.77 (25)

Coronary heart
disease: in
blacks

Age, systolic blood pressure, total
cholesterol, high density lipoprotein
cholesterol, diabetes, use of
antihypertensive medication, smoking

11 (out of 116) DMXL2, ZNF132, KIF6, F2, OR2A25,
KRT5, CTNNA3, HAP1, GIPR,
FSTL4, THBS2

0.76 0.77 (25)

MI after surgery AXT time, number of coronary grafts,
previous cardiac surgery

3 (out of 48) IL6 G572C, ICAM1 K469E, SELE G98T 0.70 0.76 (12)

Prostate cancer Age, geographic region, family history 5 (out of 16) in 5
established
regions)

rs4430796 (in 17q12), rs1859962 (in
17q24.3), rs16901979, rs6983267 and
rs1447295 (all in 8q24)

0.61 0.63 (27)

Type 2 diabetes Body mass index, plasma glucose level 3 (out of 6) PPARG P12A, CAPN10 SNP43 and
SNP44

0.68b 0.68b (24)

Type 2 diabetes Age, sex, body mass index 3 (out of 19) GCK G(–30G)A, IL6 G(–174)C,
TCF7L2 rs7903146

0.82 0.82 (15)

Type 2 diabetes Age, sex, body mass index 18 established
variants

SNPs in TCF7L2, 2 in CDKN2A/2B,
KCNJ11, PPARG, ADAM30/
NOTCH2, IGF2BP2, FTO, CDKAL1,
SLC30A8, TSPAN8//LGR5, CDC123,
WFS1, TCF2, ADAMTS9,
HHEX-IDE, THADA, JAZF1

0.78 0.80 (16)

Type 2 diabetes Age, sex, body mass index 18 established
variants

SNPs in TCF7L2, 2 in CDKN2A/2B,
KCNJ11, PPARG, ADAM30/
NOTCH2, IGF2BP2, FTO, CDKAL1,
SLC30A8, TSPAN8//LGR5, CDC123,
WFS1, TCF2, ADAMTS9,
HHEX-IDE, THADA, JAZF1

0.66 0.68 (17)

AUC, area under the receiver operating characteristic curve. AUC indicates the discriminative accuracy, the degree to which the test results can
discriminate between persons who will develop the disease and those who will not. AUC ranges from 0.50 (equal to tossing a coin) to 1.00 (perfect
discrimination).
aNumbers between brackets indicate the total number of variants at the start of the analysis from which the most predictive variants were selected. Established
means that the variants were selected from the literature, based on association with disease risk in other studies.
bAUC was calculated in letter to the editor based on the original data (41).
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FROM CAUSAL MODELS TO DISEASE

PREDICTION

Discovering complete causal mechanisms of common diseases
implies the identification of specific combinations of causal
factors among all possible combinations, namely identifying
those combinations that inevitably lead to disease. And this
may not be easy. As most multi-factorial diseases are caused
by a complex interplay of many genetic and non-genetic
factors, the number of potential combinations of these many
factors is extremely large and easily outnumbers even the
size of large cohorts or consortia. For example, the simul-
taneous testing of nine genetic variants, with three genotypes
each, gives 39 or 19 683 potential genotype combinations
and the testing of 12 variants gives 531 441 combinations.
When a genetic profile of 12 variants is tested in a cohort of
e.g. 30 000 individuals, all cases but also all controls will
likely have unique profiles even when risk variants are

common. This fact has two implications. First, it will be
very difficult to prove that the profiles that are found only
among cases actually are complete causal mechanisms, since
it is extremely unlikely that the same combination of risk
factors will be found in more than one person. Second, even
if specific combinations could be identified as complete
cause mechanisms, then still its usefulness for the prediction
of common disease is limited. When combinations of risk
factors are ‘unique’, only a few other persons in the world
may have that exact same profile.

In the field of genetics, the uniqueness of profiles is not sur-
prising as it is the basic rationale for current practice in foren-
sic genetics and paternity testing. Forensic analysts of the
Federal Bureau of Investigation (FBI) create DNA profiles
(fingerprints) on the basis of a standard set of 13 specific
short tandem repeat regions. The odds that two individuals
have exactly the same profile are less than 1 in a billion.
Potential suspects are identified when their 13-loci DNA
profile matches that from the evidence left at the crime
scene. If this concept of uniqueness is true for forensic and
legal applications, it will also hold in medicine. One obvious
exception is the inheritance of genetic profiles within families,
but also in this case the probability of sharing the same com-
bination of multiple risk genotypes is likely too small to be
useful for disease prediction. For example, if a genetic
profile of 12 homozygous risk genotypes constitutes a com-
plete causal mechanism and one parent has this profile, then
the probability of inheriting this same profile is 0.02% when
the other parent is heterozygous carrier for all variants,
and zero percent when the other parent is non-carrier for
any variant.

The limited value of prediction of future occurrences based
on a specific combination of multiple causal factors is not
exclusive to medicine, but generally encountered in the predic-
tion of complex events, such as the prevention of catastrophes
and disasters. On March 6, 1987, the British roll-on roll-off car
and passenger ferry Herald of Free Enterprise left the harbor
of Zeebrugge in perfect technical state and in good weather
conditions, and capsized less than 100 m out on open sea,
killing 193 passengers and crewmembers (30). The ferry had
left the harbor with its bow doors open. This fact undoubtedly
contributed to the capsizing, but does not fully explain the cat-
astrophe as several earlier successful crossings with open bow
doors have been reported. From further investigation,
researchers concluded that the ferry capsized because of a
unique combination of 13 unfortunate and unlikely causal
components, such as the assistant bosun had not closed the
bow doors because he fell asleep, the ballast tanks that were
filled with water for the car loading had not been emptied
because of time pressure, and there were no subdividing bulk-
heads to secure the cars (31). This combination of causes
explains a posteriori why the ferry capsized on that day and
predicts with almost 100% certainty that any ferry will
capsize again in these circumstances. Yet, the occurrence of
this specific combination of causal factors is so rare that the
combination will unlikely ever occur again in the future.
Thus, even if the cause of this disaster is completely under-
stood, the value for the prediction of future capsizing is
virtually zero, because the specific combination is expected
to be rare and too many other causal factors can contribute

Figure 2. Predictive factors in a pathway model for complex diseases. Sche-
matic (and incomplete) presentation of pathways that are involved in coronary
heart disease (CHD). All interactions between the risk factors have been
omitted. The dotted circle indicates unmeasured or unknown intermediate
factors in other pathways.

Figure 3. Complete cause models or sufficient causes of disease development.
Complete causal models for (A) Huntington Disease; (B) Phenylketonuria;
(C–F) Hypothetical examples for complex diseases. White areas refer to
genetic factors and grey areas to environmental factors.
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to ferries capsizing. Similarly, given the diversity in causal
factors and the random segregation of genetic risk variants,
the reoccurrence of specific combinations of causal factors
in complex diseases is also expected to be low. Accordingly,
we argue that even perfect understanding of causal pathways
may not lead to straightforward prediction of complex diseases
as is possible for Huntington Disease. Predictive testing of
common diseases, whether based on genetic variants only or
genetic variants in combination with environmental risk
factors, will remain based on statistical models, comparable
to what has been applied in the empirical studies that are
listed in Tables 1 and 2.

CONCLUSIVE REMARKS

Identification of sufficient cause mechanisms, and hence
perfect risk prediction, is relatively straightforward for
mono- and oligogenic disorders but immensely complicated
for complex diseases. The diversity of the genetic origin of
common diseases is too complex to unravel complete causal
pathways and to reliably identify risk profiles. Even if suffi-
cient cause genetic profiles could be identified, these profiles
will be based on different combinations of multiple variants.
As illustrated in this paper by analogy with the Herald of
Free Enterprise and DNA identification in forensic genetics,
each combination will be extremely rare, even if the variants
by themselves are common, and for that reason of limited
use for the prediction of common diseases.

Furthermore, we also argue that genetic testing may not
improve the prediction of disease beyond classical risk factors
or new biomarkers, if most of the genes that are involved in
the disease play a role through these risk factors. This problem
may concern some disorders more than others. Genetic variants
may contribute to higher predictive value when the disease etiol-
ogy and intermediate risk factors are poorly understood and
when intermediate biomarkers cannot be easily assessed.

Does this mean that we advocate a halt to further invest-
ments in genomics research of complex diseases? Certainly
not. Genomics research will substantially increase our under-
standing of disease pathogenesis, particularly through the
identification of novel disease pathways and new biomarkers.
This knowledge will likely lead to novel, more effective and
more efficient preventive and therapeutic strategies.
However, we argue that such interventions will more likely
be made available to individuals who are eligible on the
basis of classical risk factors or novel biomarkers rather than
on genetic risk profiles. We may encounter situations in
which genome-based prediction becomes more or less as
good as prediction based on traditional risk factors. Through
further reductions in genotyping costs, genetic profiling may
become more economically than disease prediction based on
traditional risk factors. Potential applications include decisions
about preventive or therapeutic interventions, the (starting)
doses of pharmacotherapy and the starting age of screening
programs as recently proposed by Pharoah et al. (32) for
breast cancer prevention. These applications have in
common that they concern interventions that can be offered
to populations at risk, accepting a share of false-positive and
false-negative predictions and recognizing that the predictive

value of genetic profiling will not be high enough for decisions
about invasive, irreversible and expensive interventions.

Before implementation in health care, all applications of
genetic profiling need appropriate evaluation to assess
whether the predictive value is sufficient e.g. to improve popu-
lation health or to improve the efficiency or quality of health
care. It is clear that prediction studies so far have been
rather simplistic in terms that most were based on a small
number of variants which by themselves explain only a frac-
tion of the genetic variability. We should not expect acciden-
tally high predictive value from a small set of weak
susceptibility genes, as the predictive value is merely a func-
tion of the risk of disease, the number of genetic variants,
the frequency of their risk genotypes and the strengths of
their effects (19). Studies investigating genome-based predic-
tion of common diseases become of real interest when the
number of associated variants is substantially larger, including
at least tens or even hundreds of weak susceptibility variants
among which preferably a few variants with stronger effects
(19). Moreover, at this point of knowledge, we still have
limited understanding of the exact causal variants, we cannot
exclude that the weak effects of common variants on the
risk of common disorders are in part explained by linkage dis-
equilibrium of rare variants with major effects, we have
limited insight in ethnic differences in gene expression and
limited insight in gene–gene and gene–environment inter-
actions. Genetic prediction may be further improved when
proper account is taken of these issues.

Furthermore, there are two methodological issues that
seriously hamper the validity of the results of many prediction
studies. First, prediction studies must be conducted in popu-
lations that are representative for the settings in which the
genetic testing will be applied. Case–control studies are not
the appropriate study design for estimating risks and evaluat-
ing predictive value, particularly not when they have recruited
hyperselected cases and controls as is often the case in genetic
research for demonstrating gene-disease associations. Genetic
profiling that is intended for prediction of future disease
should be evaluated in large, long-term follow-up studies in
which genetic variants are studied together with classical
risk factors over time such as The Rotterdam Study, the Fra-
mingham Heart Study, the Atherosclerosis Risk in Commu-
nities (ARIC) study and the European Prospective
Investigation into Cancer (EPIC) study among adults and the
Generation R study among newborns (33–37). Second, none
of the prediction studies had examined validation of the pre-
diction in independent datasets, whereas this is an integral
step in prediction research. The predictive value is generally
overestimated when the prediction model is created and eval-
uated in the same study population, particularly if the same
data were first used to select the strongest genetic predictors
out of a large set of genotyped variants. Therefore, prediction
studies, like genome-wide association studies, should be pub-
lished with replication in at least one independent cohort.

Based on theoretical grounds, the predictive value of
genetic profiling in complex diseases is limited by the herit-
ability and the prevalence of the disease, and expected to be
comparable to that of traditional risk factors at best. This
level of predictive value may be enough to see some appli-
cations of genetic profiling in clinical or preventive health
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care, but it will most likely be insufficient to personalize
medical interventions at large and to revolutionize health
care. Genomics research will lead to major advances in our
understanding of the genetic basis of common diseases, but
it will not make their etiology less complex.
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