<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia</td>
<td>A. Campanella, E. Rovelli, P. Santambrogio, A. Cozzi, F. Taroni, and S. Levi</td>
<td>1</td>
</tr>
<tr>
<td>Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice</td>
<td>C. Visconi, A. Spinazzola, M. Maggioni, E. Fernandez-Vizarra, V. Massa, C. Pagano, R. Vettor, M. Mora, and M. Zeviani</td>
<td>12</td>
</tr>
<tr>
<td>Mitochondrial abnormalities in spinal and bulbar muscular atrophy</td>
<td>S. Ranganathan, G.G. Harnison, K. Meyertholen, M. Pennuto, B.G. Burnett, and K.H. Fischbeck</td>
<td>27</td>
</tr>
<tr>
<td>The conserved translocase Tim17 prevents mitochondrial DNA loss</td>
<td>M. Iacovino, C. Granycome, H. Sembongi, M. Bokori-Brown, R.A. Butow, I.J. Holt, and J.M. Bateman</td>
<td>65</td>
</tr>
<tr>
<td>PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity</td>
<td>C. Monnier, C. Dodé, L. Fabre, L. Teixeira, G. Labesse, J.-P. Pin, J.-P. Hardelin, and P. Rondard</td>
<td>75</td>
</tr>
<tr>
<td>Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan</td>
<td>M. Briese, B. Esmaeili, S. Fraboulet, E.C. Burt, S. Christodoulou, P.R. Towers, K.E. Davies, and D.B. Sattelle</td>
<td>97</td>
</tr>
<tr>
<td>Cognitive impairment in Gdi1-deficient mice is associated with altered synaptic vesicle pools and short-term synaptic plasticity, and can be corrected by appropriate learning training</td>
<td>V. Bianchi, P. Farisello, P. Baldelli, V. Meskenaite, M. Milanese, M. Vecellio, S. Mühlemann, H.P. Lipp, G. Bonanno, F. Benfenati, D. Toniolo, and P. D’Adamo</td>
<td>105</td>
</tr>
<tr>
<td>BEST1 expression in the retinal pigment epithelium is modulated by OTX family members</td>
<td>N. Esumi, S. Kachi, L. Hackler Jr, T. Masuda, Z. Yang, P.A. Campochiaro, and D.J. Zack</td>
<td>128</td>
</tr>
<tr>
<td>Congenital hydrocephalus associated with abnormal subcommissural organ in mice lacking huntingtin in Wnt1 cell lineages</td>
<td>P. Dietrich, R. Shanmugasundaram, Shuyu E, and I. Dragatsis</td>
<td>142</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>The tuberous sclerosis proteins regulate formation of the primary cilia via a rapamycin-insensitive and polycystin 1-independent pathway</td>
<td>T.R. Hartman, D. Liu, J.T. Zilfou, V. Robb, T. Morrison, T. Watnick, and E.P. Henske</td>
<td>151</td>
</tr>
<tr>
<td>Dissociation of tau toxicity and phosphorylation: role of GSK-3β, MARK and Cdk5 in a Drosophila model</td>
<td>S. Chatterjee, T.-K. Sang, G.M. Lawless, and G.R. Jackson</td>
<td>164</td>
</tr>
<tr>
<td>New mouse models for recessive retinitis pigmentosa caused by mutations in the Pde6a gene</td>
<td>K. Sakamoto, M. McCluskey, T.G. Wensel, J.K. Naggert, and P.M. Nishina</td>
<td>178</td>
</tr>
</tbody>
</table>

Cover: The cover image shows ribbon model of the murine prokineticin receptor-2, a G protein-coupled receptor with seven transmembrane domains. Different missense mutations have been identified in patients affected by Kallmann syndrome. The corresponding amino-acid residues are shown in Corey-Pauling-Koltun representation, with different colours according to the functional effects of the mutations. Residues whose mutations affect cell surface targeting of the receptor, ligand binding, or G protein-coupling, are shown in red, blue, or orange, respectively. The mutation of the residue shown in green had no detectable effect on the receptor signalling-activity *in vitro*. See C. Monnier *et al.*, pp. 75–81.