In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons

Elizabeth A. Thomas¹, Giovanni Coppola², Bin Tang¹, Alexandre Kuhn⁴, SoongHo Kim³, Daniel H. Geschwind², Timothy B. Brown⁵, Ruth Luthi-Carter⁶, Michelle E. Ehrlich³*

¹Department of Molecular Biology, Scripps Research Institute, La Jolla, CA,
²Program in Neurogenetics, Department of Neurology and Semel Institute, University of California at Los Angeles, Los Angeles, California,
³Departments of Neurology and Pediatrics, Mount Sinai School of Medicine, New York, NY,
⁴Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD
⁵Thomas Jefferson University, Philadelphia, PA
and
⁶Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

*To whom correspondence should be addressed
Departments of Neurology and Pediatrics
Mount Sinai School of Medicine
Annenberg 14-44, 1 Gustave L. Levy Place
New York, NY 10029
Email: michelle.ehrlich@mssm.edu
Telephone: 212-241-9270; FAX: 212-241-3406

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ABSTRACT

Huntington’s disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared to those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support, were altered in both DE5 and R6/2 mice, which may be either cell-autonomous or non-cell-autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell autonomous mechanisms Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.
INTRODUCTION

The widespread expression of the huntingtin protein in Huntington’s disease (HD) immediately raises the question of the etiology of the selective vulnerability that is observed in distinct populations of neurons in this disease. Although there is increased recognition of vulnerability of neurons outside the striatum, the medium size spiny neuron (MSN) remains the most affected neuronal subtype. The regional distribution of the described huntingtin interacting proteins does not adequately explain this specificity (1,2,3), and therefore the question of "murder vs. suicide" persists. Does the mutation in huntingtin act cell autonomously, leading to dysfunction and degeneration of MSNs, i.e. "suicide"? Or, does the mutation act non-cell-autonomously, and more specifically, does mtHtt-induced dysfunction of cortical neurons lead to MSN dysfunction and degeneration, i.e. "murder"? There is evidence to support both mechanisms, and it is highly likely that the two combine to create MSN dysfunction, and ultimately, death. For therapeutic reasons, it remains critical to determine which gene alterations are cell-autonomous, and which are non-cell-autonomous.

Transcriptional abnormalities appear to represent a core pathological feature of HD (4,5) and genes showing enriched expression in the striatum, including PPP1R1B, PENK, NGEF, and DRD2, appear to be especially affected by the mutant Htt protein (6). Data obtained, however, have stopped short of differentiating cell-autonomous vs. cell non-autonomous effects on gene transcription in vivo. Nonetheless, evidence in favor of cell-autonomous effects include that lentiviral-mediated delivery of mutant Htt to rat striatum results in a progressive pathology characterized by the appearance of ubiquitinated Htt aggregates, loss of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) staining, and cell death (7,8), and cultured striatal cells in which mutant Htt fragments are expressed show gene expression deficits similar to those observed in human HD subjects (9,10). Given that in vitro conditions may not
accurately represent the in vivo environment, especially in terms of the normal development of striatal neurons and their afferent and efferent projections, we sought to determine the extent of cell-autonomous transcriptional dysregulation in vivo.

We previously generated an HD transgenic mouse "model", D9-N171-98Q (a.k.a. DE5), in which the forebrain expression of the first 171 amino acids of human huntingtin with a 98Q repeat expansion is limited to medium spiny neurons (MSNs) of the striatum (11). These mice exhibit an HD-like phenotype, including failure to gain weight after ten months of age, motor impairment, the presence of intranuclear inclusion bodies, and disrupted expression of several striatal-enriched genes. Here we have examined genome-wide gene expression patterns in symptomatic DE5 transgenic mice to determine which transcripts are cell-autonomously dysregulated in the striatum. We compared these results to microarray data generated on the identical array platform from R6/2 transgenic mice carrying two different CAG repeat lengths (150 and 300), and to cultured MSNs expressing mutant Htt and full-length HD models, to further highlight pathways that may be dysregulated on a non-cell-autonomous basis. Our findings demonstrate that HD-induced dysregulation of the striatal transcriptome can be fundamentally attributed to intrinsic effects of mutant huntingtin.

RESULTS

D9-N171-98Q transgenic mice

We have developed transgenic mice, D9-N171-98Q (subsequently referred to as DE5), which within the forebrain, selectively express a pathogenic huntingtin species in the medium spiny neurons of the striatum, specifically excluding the neocortex (11). We have shown that these mice develop abnormalities characteristic of pan-cellular HD mouse models, including intranuclear inclusion bodies, failure to gain weight after ten months of age and behavioral impairment, particularly on the rotarod apparatus. Here we investigated the striatal genome-
wide expression profiles of these mice at 14 months of age using microarray analysis. Overall, 1371 genes were found to be altered in their expression in the striatum of DE5 mice compared to wt controls, (n=740 down-regulated; n=631 up-regulated; p-value <0.05; abs (Log2 ratio) > 0.10; Supplementary Table 1 1).

Perhaps as expected, a highly significant decrease in the expression of genes showing striatal-enriched expression (19) was detected in DE5 transgenic mice (n=26 genes; p=2.1E-15) (Table 1). These genes include prodynorphin \(Pdyn\), protein phosphatase 1, regulatory (inhibitor) subunit 1B \(Ppp1r1b\: a.k.a.\ DARPP-32\), A2a adenosine receptor \(Adora2a\), the dopamine D2 receptor \(Drd2\), and proenkephalin \(Penk\), all whose expression decreases were validated by qPCR in our previous publication (11). This is consistent with findings from human subjects with HD (4,6) and other HD transgenic mouse and cell culture models (12-15), including other systems expressing a similar Htt fragment (N171-82Q) (9,14). These findings indicate large-scale molecular dysfunction in the striatum of DE5 mice. Of note, whereas changes in gene expression in pan-neuronal models included decreases in many striatal-enriched, interneuron-selective genes \(Sst, Npy, Pvalb, Cck\ and \ Nos1\), parallel changes were absent from DE5 striata (with Pvalb mRNA actually showing increased instead of decreased expression).

Direct comparisons to pan-neuronal HD mouse models

We compared striatal genome-wide expression profiles of symptomatic DE5 mice to those from two different lines of R6/2 transgenic mice, carrying either ~150 CAG repeats, "Q150 mice" (6 weeks of age) or carrying ~300 CAG repeats, "Q300 mice" (5 months of age). These data were generated on the same Illumina platform; [Q300 from (16) and Q150, this study] and analyzed in an identical manner in order to allow for qualitative and quantitative comparisons to our DE5 mouse dataset. To visualize the correlation of fold-change and to consider the specific direction of change (increased versus decreased), these features are shown in scatter plots (Figure
1) and Venn diagram (Figure 2). We found a highly significant overlap of differentially expressed probesets among the three mouse strains, with the greatest similarity occurring between DE5 and R6/2-Q300 mice, with an overlap of n=415 probeset IDs (p<4.29E-22) representing ~30% of all differentially expressed probesets in DE5 transgenic mice. Overall, high concordance is observed in the direction of the expression change when comparing DE5 transgenic mice with either R6/2 line; however, the magnitude of the expression changes for both up- and down-regulated genes is smaller in the DE5 transgenic mice compared to either R6/2 strain. The top-ranked expression differences present in all three mouse models are shown in Table 2, along with a color-coded designation of direction and magnitude of change. Perfect concordance was observed for all genes, except Bin1, which was decreased in expression in DE5 transgenic and R6/2-Q150 transgenic mice, but elevated in expression in R6/2-Q300 transgenic mice (Table 2).

We also compared expression profiles from DE5 transgenic mice to those from older R6/2 mice [Q150 at 12 weeks of age, using previously published data (12)]. Direct comparisons should consider the caveat that this microarray dataset was performed on an Affymetrix platform and necessarily analyzed by an alternative method. Nevertheless, approximately 50% of the genes (n=821) found to be differentially expressed in DE5 mice were also significantly altered in these later-stage R6/2 mice, [Supplemental datasets 1 and 2 from (12)]. A list of genes altered in DE5 but not in either R6 model is supplied in Supplementary Table 2.

Comparisons to in vitro striatal neurons overexpressing mutant human Htt

Previous studies have examined transcriptome-wide changes in rat primary striatal neurons expressing a similar N-terminal fragment of human mutant Htt protein (the first 171 amino acids with an82Q repeat expansion) (9). We compared gene expression changes manifested in DE5 transgenic mice to those exhibited in the Htt171-82Q-expressing striatal neurons after correcting
for species- and microarray platform differences and reanalyzing both microarray datasets by the same method (see Materials and Methods). We identified 126 gene expression changes that were highly concordant between in vivo and in vitro data (Supplementary Table 3). This list included several striatal-enriched genes, such as Ppp1r1b, Baiap2, Adora2a and Ngef.

Correlations to human HD gene expression and full-length HD mouse models

In order to determine to what extent the DE5 mice recapitulate the gene expression profiles detected in human HD, we compared gene transcriptome profiles from the striatum of DE5 transgenic mice with previously published microarray data from human HD caudate samples (4). Human orthologs of the top 200 differentially expressed mouse genes in the striatum (including both increases and decreases) were mapped and their expression differences screened in the published human HD dataset (4). A concordance coefficient was calculated taking into account both concordant, as well as discordant, changes as described previously (4). The concordance coefficient for our dataset was 0.388 for down-regulated genes and 0.201 for all genes, which is consistent with previous studies reporting statistically significant concordant coefficients for other HD mouse models of 0.190 to 0.490 (4,18). Hence, our findings indicate that DE5 transgenic mice demonstrate a strong recapitulation of gene expression changes observed in human patients with HD.

Microarray data from full-length HD models have also been generated on the Affymetrix platform, where it was shown that several full-length models at late stage share significant gene expression changes with the R6/2 transgenic lines (12). Accordingly, our DE5 mice also show overlapping gene expression changes with these HD models; the greatest overlap was observed with the 22-month CHL2Q150/Q150 mice where n=248 downregulated genes (30%) and n=178 of upregulated genes (24%) were shared between both models (Figure 3 and Supplementary Table 4).
Molecular features of cell-autonomy

To probe the contributions of cell-autonomous mechanisms to striatal pathology, we more closely examined those genes that were significantly disrupted in the striatum of DE5 transgenic mice and/or either of the R6/2 mouse lines. To this end, we performed Gene Ontology screening of the genes significantly altered in each mouse model, which revealed both common and distinct functional categories associated with DE5 and R6/2 transgenic mice. All three models showed significant association with signal transduction and calcium signaling. However, only DE5 transgenic mice were associated with protein transport, axonogenesis and RNA splicing (Figure 4). Consistent with these findings, previous Gene Ontology screening of genes significantly altered in the Htt171-82Q-expressing striatal neurons also revealed biological associations to neuronal signaling and divalent cation transport, as well as RNA splicing/RNA processing and and neurite development (9). Gene expression changes in R6/2-Q150 mice were uniquely related to categories of cell death and apoptosis (Figure 4), which might be connected to their rapid disease progression and shorter lifespan compared to either R6/2-Q300 mice or DE5 transgenic mice.

We next used Ingenuity Systems Pathways Analysis to examine known canonical pathways that were significantly correlated with genes differentially expressed in each line, as well as those genes selectively altered in either DE5 or R6/2 lines. We focused specifically on those pathways that have been implicated in cell-autonomous and non cell-autonomous pathophysiologic mechanisms in HD. Some pathways were associated with dysfunction in all three models, although in several cases, different genes within a given pathway were found to be altered in their expression (Table 3). For example, multiple genes in the calcium signaling pathway were altered in all three transgenic lines, although eight genes were uniquely altered in DE5 transgenic mice, and five in R6/2 transgenic mice. In other pathways, dysregulation was
more prominent in the pan-neuronal lines than in the striatal-specific line. Most striking was
dysregulation of genes associated with dopamine- and glutamate-signaling, which was greater in
both R6/2 lines relative to the DE5 line. Notably, genes related to these pathways are also
significantly dysregulated in R6/2-150Q mice at later stages (12). On the other hand, changes
associated with oxidative phosphorylation and mitochondrial dysfunction were relatively more
prominent in DE5 transgenic mice, with several genes in this pathway being altered in
expression selectively in this model. Genes in these pathways that were altered in the two R6/2
lines differed from each other in addition to being distinct when compared to DE5 transgenic
mice. Finally, certain genes in the related peroxisome proliferator-activated receptor pathway
(PPAR) were altered in all lines, but several were dysregulated only in DE5 transgenic mice,
including \(\text{Nr2f1, Nfkbia, Pdgfa, Mras, Rxra, Map3k7ip1, Ppargc1a} \) and \(\text{Ep300} \) (Table 3; Figure
5).

Real-time PCR Expression Validation

We validated the expression differences for 11 genes related to these canonical pathways,
including two striatal-enriched genes (\(\text{Pde1b} \) and \(\text{Rgs9} \)), in the striata of DE5 transgenic mice.
These include the ATP synthase, H+ transporting, mitochondrial F0 complex, subunit g (\(\text{Atp5l} \)),
cytochrome c oxidase, subunit VI a, polypeptide 1 (\(\text{Cox6a1} \)), cytochrome c oxidase, subunit VIIa
1 (\(\text{Cox7a1} \)), cytochrome c oxidase, subunit XVII assembly protein homolog (\(\text{Cox17} \)), NADH
dehydrogenase (ubiquinone) 1 alpha subcomplex, 2 (\(\text{Ndufa2} \)), NADH dehydrogenase
(ubiquinone) 1, subcomplex unknown, 1 (\(\text{Ndufc1} \)), and NADH dehydrogenase (ubiquinone) 1,
subcomplex unknown, 2 (\(\text{Ndufc2} \)), nuclear receptor subfamily 2, group F, member 1 (\(\text{Nr2f1} \)),
muscle and microspikes RAS (\(\text{Mras} \)), mitogen-activated protein kinase kinase kinase 7
interacting protein 1 (\(\text{Map3k7ip1} \)) and peroxisome proliferative activated receptor, gamma,
coactivator 1 alpha (\(\text{Ppargc1a} \)). Eight of these genes showed validated expression differences
consistent with the microarray results: \(\text{Rgs9, Pde1b, Atp5l, Ndufc1, Mras, Nr2f1, Map3k7ip1, Ppargc1a} \) (Figure 6).
DISCUSSION

To elucidate the extent of cell-autonomous transcriptional alterations in HD, we performed genome-wide expression profiling of dorsal striatal tissue from DE5 transgenic mice. Importantly, this is the first microarray study performed in an in vivo “striatal-specific” genetic HD model. In this study, we demonstrate a relatively high degree of overlap of changes in gene expression in DE5 transgenic mice, a forebrain striatal-specific mouse model of HD expressing the huntingtin N171 fragment, and two transgenic pan-cellular R6 models, human caudate, and huntingtin N171 fragment-expressing cultured striatal neurons (9). Collectively, these data provide strong evidence that intrinsic effects of mutant Htt are sufficient to result in transcriptional alterations in several pathways relevant to HD pathology. Conversely, these data suggest that expression of mutant Htt in the cortex is not required for most of the transcriptional dysregulation present in mouse models of HD.

Transcriptional effects of the cortex on the striatum in HD may arise at least in part from decreased synthesis and transport of brain derived neurotrophic factor (BDNF) (18), and it has been suggested that cortical-specific deletion of BDNF mimics the pattern of transcriptional dysregulation in HD (19). Importantly, DE5 transgenic mice express normal levels of cortical BDNF and striatal trkB mRNA (11). Moreover, early embryonic deletion of BDNF may not accurately represent the pattern of decreased BDNF noted in HD. Of note, however, many of the striatal-enriched genes are also regulated by BDNF (20), and a decrease in this trophic factor may contribute to a greater magnitude of the alterations in pan-neuronal HD models. It is also possible that the magnitude of these alterations would be greater in older DE5 mice than those utilized in this study, since DE5 mice have a normal life span.

Other mechanistic candidates leading to selective neuronal vulnerability in HD include mitochondrial dysfunction that induces energy deficits, increased oxidative stress, and
abnormalities of calcium signaling. Pathways associated with both cell- and non-cell-autonomous components include glutamate and dopamine neurotransmission (21). We therefore compared and contrasted changes in gene expression in these canonical pathways among the different mouse models. We also included the PPAR-activated receptor pathway, as it potentially unites transcriptional dysregulation with mitochondrial dysfunction (22). We anticipated that changes in gene expression associated with mitochondrial dysfunction and oxidative stress, and the responses to these stressors, would be largely cell-autonomous, resulting in a high degree of overlap between the DE5 and R6/2 transgenic models. It was therefore surprising to discover that levels of a number of genes in these pathways were altered only in the DE5 transgenic line, including the qPCR-validated $Atp5l$, $Ndufac1$ and $Mras$, despite a longer polyglutamine repeat and greater symptomatology in the R6 transgenic models. This suggests that mitochondrial deficits and oxidative stress are prominent features of intrinsic striatal dysfunction. The fact that other genes associated with these functions are altered in their expression in R6/2 suggests that non-cell-autonomous effects might both exacerbate and compensate for this dysfunction. Of note, however, $Mras$, whose protein product may be required for neurotrophic signaling and dendritic remodeling but is also expressed in glia (23), is uniquely highly down-regulated in the DE5 model.

In the calcium signaling pathway, the expression profiles of the three mouse models are highly shared, implying a substantial degree of cell-autonomous changes related to this pathway. This is in contrast to the glutamate and dopamine receptor signaling, pathways for which the greatest number of gene expression changes occurred in R6/2 transgenic, and very few occurred in DE5 transgenic mice. As increased sensitivity to excitotoxicity appears to result from combinations of increased cortical glutamate neurotransmission and mislocalization of MSN glutamate receptor subtypes in the extra-synaptic region (reviewed in 24), which may not be reflected by transcriptional dysregulation, these results do not obviously allow for a prediction
regarding sensitivity to glutamate excitotoxicity in the DE5 mouse. Perhaps not surprisingly, although Drd2, Rgs9 and Ppp1r1b mRNAs are decreased in the striatum of DE5 transgenic mice, many more genes in the dopamine receptor signaling pathway are dysregulated in R6/2 compared to DE5 striatum, likely reflecting trans-synaptic regulation and/or compensatory responses to reduced dopaminergic input (25).

As noted above, we found a substantial overlap of gene expression differences between DE5 transgenic mice and Htt171-82Q-expressing primary striatal cultures. Furthermore, we found that DE5 transgenic mice showed a similar enrichment of GO categories to those reported previously from these in vitro studies. In particular, gene expression changes unique to DE5 transgenic mice and cultured striatal neurons, but not R6/2 mice, were associated with protein transport, axon development and RNA splicing (9). There are actually fewer changes in the DE5 model relative to the cultured neurons. We hypothesize that this is due to the somewhat immature nature of the neurons in vitro, and also on the fact that by definition, they are removed from their normal developmental and adult environment and changes are therefore both cell-autonomous and independent of brain circuitry. Another previous microarray study reported transcription changes from rat clonal striata-derived cells expressing an N-terminal 548-amino-acid huntingtin fragment under the control of a doxycycline-regulated promoter (10). These studies revealed altered expression of genes involved in cell signaling, transcription, lipid metabolism, as well as RNA processing, consistent with our findings. Overall, of the ~80 gene expression abnormalities reported, we found six genes, including two lipid-related genes, Acat2 and Fasn, that were also dysregulated in the DE5 transgenic mice.

Of the altered genes that are ubiquitously expressed, there were important differences in the direction of change in a subset of transcripts that may reflect compensatory changes. For example, Ppargc1a is a member of the PPAR-regulated pathway, and its down-regulation in MSNs is hypothesized to play a causative role in HD pathophysiology (17, 26-28). In DE5
transgenic mice, however, Ppargc1a mRNA is up-regulated, whereas it is unchanged in the R6 transgenic models in this study. Interestingly, Nr2f1 expression is also up-regulated in DE5 mice and Map3k7ip1 is down-regulated, but are both unchanged in the R6 models, which could serve to balance the impairment of Ppargc1a-associated activity in DE5 mice and subsequent down-regulation of protective mitochondrial activity. Another example of an abnormality in the oxidative phosphorylation pathway in DE5 mice only is Ndufc1, which follows the same pattern as Ppargc1a (Figure 6), The functional implications, therefore, may actually be similar to those models in which Ppargc1a is down-regulated and may indicate altered mitochondrial energy metabolism in DE5 transgenic mice.

Mutant Htt protein interacts with multiple transcription factors, most of which are not cell-specific, e.g. the cAMP response element-binding protein- (CREB)-binding protein (CBP), Specificity protein 1 (Sp1), TATA binding box protein (TBP), Bcl11b, repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), and widely expressed components of the basal polymerase II transcriptional machinery (29-31). Overall, the genome-wide transcriptome changes induced by mutant Htt in DE5 cannot yet be ascribed to a particular transcription factor regulatory network (32-35).

A final distinction worthy of consideration is the cellular localization of expression of genes of interest. The D9 promoter driving Htt expression in DE5 transgenic mice does not direct expression to striatal interneurons or to glia (36). Striatal GABAergic/parvalbumin interneurons receive direct, convergent cortical input (37) and are in fact highly sensitive in HD and in models of excitotoxicity (38). In mouse HD models, Pvalb gene expression is usually decreased; however, in the DE5 model, Pvalb expression is increased. As noted above, PGC1α mRNA is also increased, which may be driving the Pvalb gene (39). These data imply that in the DE5 mouse, transcriptome alterations in these interneurons is mediated by cell-cell interactions, whereas there may be more direct, cell-autonomous alterations when mutant Htt is expressed in a
pan-cellular distribution. In regards to glia, it has recently been demonstrated that selective expression of mutant htt in glia results in a distinct phenotype and further exacerbates symptoms in the N171-82Q transgenic mouse (40, 41). Importantly, the Nrf2-mediated protective pathway is largely localized to astrocytes (42), so it will be important to determine in which cell types(s) alterations in expression of genes in this pathway is occurring in all HD mouse models.

In summary, our data are consistent with the notion that transcriptional dysregulation in HD MSNs *in vivo* is largely cell-autonomous in specific canonical pathways, and largely non-cell-autonomous in others. They are also consistent with our previous findings regarding the nature and severity of the motor deficit in the DE5 transgenic mouse, particularly when directly compared to the prp-N171-82Q model (11). Our underlying assumption is that the changes noted in the DE5 mouse striatum are cell autonomous, but can simultaneously be compensating for cell-intrinsic abnormalities. The converse is also true, i.e. compensatory pathways may also normalize some of the anticipated alterations. Conversely, in pan-neuronal models, e.g. R6/2, transcriptome alterations that may occur on a cell-autonomous basis may be “masked” by opposing, non-cell-autonomous effects of the mutation on the MSN, resulting in gene alterations that are unique to DE5 transgenic mice. These latter alterations may also be compensatory, and may be either beneficial or deleterious. Finally, it is possible that the response of individual changes may differ based on htt fragment length, although published data does not support a major role for fragment length. Overall, this situation is perhaps most similar to what has been hypothesized for the etiology of amyotrophic lateral sclerosis (43), in which the pathophysiologic processes are initiated in highly vulnerable neuronal subtypes, but progression proceeds more rapidly via non-cell-autonomous mechanisms. Therapeutic targeting of cell- or non-cell-autonomous sites will, therefore, depend on which pathway(s) is the desired target.
Materials and Methods

DE5 transgenic mice. Creation and characterization of the D9-N171-98Q (a.k.a. DE5) mouse line has been previously reported (11). Male DE5 transgenic mice and non-transgenic controls (i.e. wt) (n=3,4 per genotype) were used for the microarray analysis. Mice were sacrificed at 14 months of age, a time at which HD-like phenotypes are clearly manifested (11).

Microarray Analysis: comparisons to R6/2 line. Total RNA was extracted from the striatum of wt and DE5 transgenic mice using the Nucleospin RNA kit (BD Biosciences, San Jose, CA). RNA quantity was assessed with Nanodrop (Nanodrop Technologies) and quality with the Agilent Bioanalyzer (Agilent Technologies). Total RNA (200 ng) was amplified, biotinylated and hybridized on Illumina Mouse_8_V2 Beadchips, querying the expression of ~22,000 Refseq transcripts, as per manufacturer's protocol. Slides were scanned using Illumina BeadStation and signal extracted using Illumina BeadStudio software (Illumina, San Diego CA). Raw data was analyzed using Bioconductor packages (44). Quality assessment was performed looking at the inter-array Pearson correlation and clustering based on top variant genes was used to assess overall data coherence. Contrast analysis of differential expression was performed using the 'limma' package (45). After linear model fitting, a Bayesian estimate of differential expression was calculated. Data analysis was aimed at 1), identifying transcriptional changes in the DE5 transgenic compared to wt mice, and 2), comparing striatal gene expression profiles of DE5 transgenic mice to those profiles previously generated from the striata of two different lines of R6/2 mice generated on the same platform (16 and Luthi-Carter, Kuhn, unpublished studies). Several criteria were considered for identifying differentially expressed genes, including p-value cut-offs ranging from p<0.001 to p<0.05 and different log2 ratio cut-offs.
Microarray Analysis: comparisons to in vitro cells. Gene expression profiles (n=7) obtained from DE5 and wt mice were normalized using robust multi-array average and log2-transformed using the Bioconductor package 'beadarray' (46). We performed differential expression analysis between DE5 (n=4) and wt (n=3) mice using the Bioconductor package 'limma'(45) and adjusted p-values for multiple testing (47). To assess the resemblance of gene expression changes detected in DE5 mice and in a rat primary cell culture model (N171-82Q versus N171-18Q, data from ref 9), we mapped all Illumina probes onto orthologous Affymetrix probe sets on the Rat RAE230A array format using the Bioconductor package 'annotationTools' (48). We then mapped Illumina's RefSeq transcript ID annotation (Mouse_8_V2) to corresponding mouse gene IDs using gene2accession obtained from Entrez gene (on Aug 6, 2010). Orthologous rat genes were obtained using HomoloGene (build 64) and mapped to Affymetrix the probe sets present on the rat microrray using Affymetrix annotation (build 30). Starting from 22,744 Illumina probes annotated with a RefSeq ID, we obtained 21,716 corresponding gene IDs that could be mapped onto 18,352 rat orthologous gene IDs. 14,572 of these had at least one probe set on the Affymetrix microarray. Note that using the RefSeq IDs provided in Illumina's annotation (instead of gene IDs) allowed us to perform a more complete mapping since 5,580 probes that were annotated with a RefSeq transcript were not annotated with a gene ID. This Illumina probe to Affymetrix probe set mapping was then used to align differentially expressed genes in DE5 mice with orthologous Affymetrix probe sets on the Rat RAE230A array.

Pathway Analyses. Gene Ontology (GO) terms were identified using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) to understand the potential biological relevance of differentially expressed genes. Canonical pathway analysis was performed using Ingenuity Systems Pathway Analysis.
Microarray Data Concordance. We assessed the correlation between gene expression changes detected in DE5 transgenic mice compared to those observed in human post-mortem caudate by calculating the concordance coefficient c, as described previously (12). The concordant regulation was defined as a pair of orthologous probe sets reporting same-direction differential expression between disease and control (i.e. both upregulated or both downregulated) where the human probe set showed a significant expression change (FDR p-value < 0.05) (13). Similarly, discordant regulation was defined as two probe sets reporting opposite sign regulations where the human probe set showed a significant expression change (FDR p-value < 0.05). The concordance coefficient, c, was defined as:

\[c = \frac{\#\text{concordant} - \#\text{discordant}}{N} \]

The #concordant is the number of concordant orthologous probe set pairs, the #discordant is the number of discordant orthologous probe set pairs and N the number of mouse probe sets selected for the comparison. Of the top 200 significantly altered genes in the DE5 transgenic mice, 16 gene IDs had no human homolog or were not on the Illumina arrays, leaving 184 genes for the comparison against human.

Real-time PCR experiments. Real-time PCR experiments were performed using the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA) as described previously (19). Amplification was performed on a cDNA amount equivalent to 25 ng total RNA with 1 x SYBR® Green universal PCR Master mix (Applied Biosystems) containing deoxyribonucleotide triphosphates, MgCl₂, AmpliTaq Gold DNA polymerase, and forward and reverse primers. Specific primers for each mouse gene endogenous control were designed using Primer Express 1.5 software and their specificity for binding to the desired sequences was
searched against NCBI database (Supplementary Table 5). Standard curves were generated for each gene of interest using serial dilutions of mouse cDNAs. Experimental samples and no-template controls were run in duplicate. The PCR cycling parameters were: 50°C for 2 min, 95°C for 10 min, and 40 cycles of 94°C for 15 s, 60°C for 1 min. The amount of cDNA in each sample was calculated using SDS2.1 software by the comparative threshold cycle (Ct) method and expressed as $2^{\text{exp}(Ct)}$ using hypoxanthine guanine phosphoribosyl transferase (Hprt) as an internal control. Student’s t test (unidirectional) was used to determined significant differences in expression between non-transgenic and DE5 transgenic mice. Statistical analyses were performed using GraphPad software (GraphPad Prism, San Diego, CA).

Acknowledgements: This work was supported by the National Institutes of Health (NS-059936 and -045942 to M.E.E., NS44169 to E.A.T.) and a Cure Huntington’s Disease Initiative award to M.E.E.

Conflict of Interest: None
References

Legends to Figures

Figure 1. Scatterplots showing concordant and discordant changes of the overlap of differentially expressed genes between DE5 transgenic and the R6/2 lines. Log2 ratios for the genes expression changes for each comparison are shown, with each circle representing an individual gene. Panel A shows overlap between DE5 and R6/2-Q150 transgenic mice (n=392 genes); Panel B shows overlap between DE5 and R6/2-Q300 transgenic mice (n=511 genes).

Figure 2. Venn diagrams depicting overlap between DE5, R6/2-Q150 and R6/2-Q300 for both down-regulated and up-regulated genes.

Figure 3. Venn diagrams depicting overlap between DE5, Hdh(Q92/Q92, and CHL2(Q150/Q150) for both down-regulated and up-regulated genes.

Figure 4. Gene Ontology categories significantly associated with genes dysregulated in DE5 and R6/2 transgenic mice. Specific categories are listed along the x-axis, with the number of genes per category along the y-axis.

Figure 5. The Peroxisome proliferator-activated receptor pathway. Schematic depiction of the PPAR pathway with those genes highlighted that are selectively altered in their expression in DE5 transgenic mice. Red indicated an upregulation of gene expression; green, a downregulation. PPARα (Ppargc1a), peroxisome proliferator-activated receptor gamma coactivator 1-alpha; Coup-tf (Nr2f1), nuclear receptor subfamily 2, group F, member 1; Rxra (Rxra), retinoid X receptor alpha; Ncor1 (Ncor1), Nuclear receptor co-repressor 1; Mras (Mras), muscle and microspikes RAS; Pdgfα (Pdgfa), platelet derived growth factor, alpha; TAB1
(Map3k7ip1), TGF-beta activated kinase 1/MAP3K7 binding protein 1; Nfkbia (Nfkbia), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha. Pathway depiction reproduced with permission from Ingenuity Systems Analysis.

Figure 6. Expression alterations of genes associated with various canonical pathways in DE5 transgenic mice. Real-time PCR analysis was performed for the indicated genes (indicated by their official Unigene ID) on RNA samples from striatum of DE5 transgenic mice. Data are depicted as fold-change of the mean expression level ± SEM (n=4 mice per group). The relative abundance of each gene expression was normalized using Hprt. Asterisks denote significant differences from wt or control subjects as determined by unidirectional Students t tests: *, p<0.05; **, p<0.005; †, p<0.06.
Table 1. Striatal-enriched genes showing altered expression in DE5 transgenic mice.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene Description:</th>
<th>Accession #:</th>
<th>Log2 ratio:</th>
<th>p-value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actn2</td>
<td>Alpha-actinin 2</td>
<td>NM_033268</td>
<td>-0.229</td>
<td>0.00135</td>
</tr>
<tr>
<td>Adora2a</td>
<td>Adenosine A2 receptor</td>
<td>NM_009630</td>
<td>-0.199</td>
<td>0.04774</td>
</tr>
<tr>
<td>Arpp21</td>
<td>Cyclic AMP-regulated phosphoprotein, 21</td>
<td>NM_033264</td>
<td>-0.116</td>
<td>0.04151</td>
</tr>
<tr>
<td>Baiap2</td>
<td>BAI1-associated protein 2</td>
<td>NM_130862</td>
<td>-0.301</td>
<td>0.00796</td>
</tr>
<tr>
<td>Bcl11b</td>
<td>B-cell leukemia/lymphoma 11B</td>
<td>NM_021399</td>
<td>-0.259</td>
<td>0.04091</td>
</tr>
<tr>
<td>Calb1</td>
<td>Calbindin 1</td>
<td>NM_009788</td>
<td>-0.116</td>
<td>0.04354</td>
</tr>
<tr>
<td>Dgke</td>
<td>Diacylglycerol kinase</td>
<td>NM_019505</td>
<td>-0.268</td>
<td>0.00779</td>
</tr>
<tr>
<td>Drd2</td>
<td>Dopamine D2 receptor</td>
<td>NM_010077</td>
<td>-0.384</td>
<td>0.0402</td>
</tr>
<tr>
<td>Gng7</td>
<td>Gamma 7 subunit</td>
<td>NM_010319</td>
<td>-0.426</td>
<td>0.00596</td>
</tr>
<tr>
<td>Hpca</td>
<td>Hippocalcin</td>
<td>NM_010471</td>
<td>-0.279</td>
<td>0.005</td>
</tr>
<tr>
<td>Klf16</td>
<td>Kruppel-like factor 16</td>
<td>NM_078477</td>
<td>-0.493</td>
<td>0.00052</td>
</tr>
<tr>
<td>Ngef</td>
<td>Neuronal guanine nucleotide exchange factor</td>
<td>NM_019867</td>
<td>-0.179</td>
<td>0.00187</td>
</tr>
<tr>
<td>Pde10a</td>
<td>Phosphodiesterase 10A</td>
<td>NM_011866</td>
<td>-0.302</td>
<td>0.00562</td>
</tr>
<tr>
<td>Pde1b</td>
<td>Phosphodiesterase 1b</td>
<td>NM_008800</td>
<td>-0.334</td>
<td>0.00013</td>
</tr>
<tr>
<td>Pdyn</td>
<td>Prodynorphin</td>
<td>NM_01863</td>
<td>-0.408</td>
<td>0.00101</td>
</tr>
<tr>
<td>Penk</td>
<td>Enkephalin</td>
<td>NM_001002927</td>
<td>-0.31</td>
<td>0.00479</td>
</tr>
<tr>
<td>Ppp1ca</td>
<td>Protein phosphatase 1, catalytic subunit, alpha</td>
<td>NM_031868</td>
<td>-0.349</td>
<td>0.0033</td>
</tr>
<tr>
<td>Ppp1r1b</td>
<td>DARPP-32</td>
<td>NM_144828</td>
<td>-0.288</td>
<td>0.00929</td>
</tr>
<tr>
<td>Rarb</td>
<td>RAR beta receptor 1</td>
<td>NM_011243</td>
<td>-0.269</td>
<td>0.0411</td>
</tr>
<tr>
<td>Rasgrp2</td>
<td>RAS, guanyl releasing protein 2</td>
<td>NM_011242</td>
<td>-0.123</td>
<td>0.00902</td>
</tr>
<tr>
<td>Rin1</td>
<td>Rab/Ras Inhibitor</td>
<td>NM_145495</td>
<td>-0.385</td>
<td>0.00005</td>
</tr>
<tr>
<td>Rgs9</td>
<td>Regulator of G-protein signaling 9</td>
<td>NM_011268</td>
<td>-0.489</td>
<td>0.00069</td>
</tr>
<tr>
<td>Rxrg</td>
<td>Retinoid X receptor gamma</td>
<td>NM_009107</td>
<td>-0.421</td>
<td>0.00254</td>
</tr>
<tr>
<td>Scn4b</td>
<td>Sodium channel, type IV, beta</td>
<td>BK001031</td>
<td>-0.644</td>
<td>0.00081</td>
</tr>
<tr>
<td>Tesc</td>
<td>Tescalcin</td>
<td>NM_021344</td>
<td>-0.544</td>
<td>0.00031</td>
</tr>
<tr>
<td>Zfp521</td>
<td>Zinc finger protein 521</td>
<td>NM_145492</td>
<td>0.247</td>
<td>3.00E-05</td>
</tr>
</tbody>
</table>

Downloaded from http://hmg.oxfordjournals.org/ by guest on April 30, 2016
Table 2. Top expression changes significantly altered in all three HD mouse lines.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Log2Ratio DE5</th>
<th>Log2Ratio Q150</th>
<th>Log2Ratio Q300</th>
<th>Gene ID</th>
<th>Log2Ratio DE5</th>
<th>Log2Ratio Q150</th>
<th>Log2Ratio Q300</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDIT4L</td>
<td>-1.02</td>
<td>-0.96</td>
<td>-1.98</td>
<td>PPARGC1B</td>
<td>-0.34</td>
<td>-0.27</td>
<td>-0.41</td>
</tr>
<tr>
<td>D0H4S114</td>
<td>-0.71</td>
<td>-0.76</td>
<td>-0.72</td>
<td>RYR1</td>
<td>-0.33</td>
<td>-1.26</td>
<td>-1.72</td>
</tr>
<tr>
<td>G630049C14R</td>
<td>-0.62</td>
<td>-0.98</td>
<td>-0.99</td>
<td>SEC14L1</td>
<td>-0.33</td>
<td>-0.25</td>
<td>-0.73</td>
</tr>
<tr>
<td>IL17RC</td>
<td>-0.57</td>
<td>-0.53</td>
<td>-1.23</td>
<td>PPP1CA</td>
<td>-0.33</td>
<td>-0.66</td>
<td>-0.5</td>
</tr>
<tr>
<td>TESC</td>
<td>-0.54</td>
<td>-0.46</td>
<td>-0.97</td>
<td>CHGB</td>
<td>-0.33</td>
<td>-0.6</td>
<td>-0.45</td>
</tr>
<tr>
<td>RYR1</td>
<td>-0.52</td>
<td>-1.26</td>
<td>-1.72</td>
<td>CDK2AP1</td>
<td>-0.33</td>
<td>-0.43</td>
<td>-0.33</td>
</tr>
<tr>
<td>MAS1</td>
<td>-0.52</td>
<td>-0.37</td>
<td>-1.01</td>
<td>KNS2</td>
<td>-0.33</td>
<td>-1.13</td>
<td>-0.22</td>
</tr>
<tr>
<td>AP1S1</td>
<td>-0.52</td>
<td>-0.52</td>
<td>-0.52</td>
<td>EPB4.9</td>
<td>-0.33</td>
<td>-0.23</td>
<td>-0.22</td>
</tr>
<tr>
<td>PROSAPIP1</td>
<td>-0.51</td>
<td>-0.66</td>
<td>-0.44</td>
<td>B230373P09RIK</td>
<td>-0.32</td>
<td>-0.76</td>
<td>-0.79</td>
</tr>
<tr>
<td>LMO2</td>
<td>-0.51</td>
<td>-0.55</td>
<td>-0.73</td>
<td>FOXO1</td>
<td>-0.32</td>
<td>-0.41</td>
<td>-0.58</td>
</tr>
<tr>
<td>CLSPN</td>
<td>-0.48</td>
<td>-0.58</td>
<td>-1.01</td>
<td>EFCBP2</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.58</td>
</tr>
<tr>
<td>RPEL1</td>
<td>-0.46</td>
<td>-0.51</td>
<td>-0.43</td>
<td>493051J111RIK</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-1.21</td>
</tr>
<tr>
<td>ZFPM1</td>
<td>-0.46</td>
<td>-0.23</td>
<td>-0.44</td>
<td>SYT9</td>
<td>-0.31</td>
<td>-0.23</td>
<td>-0.76</td>
</tr>
<tr>
<td>DBP</td>
<td>-0.46</td>
<td>-0.57</td>
<td>-0.41</td>
<td>PDYN</td>
<td>-0.32</td>
<td>-0.8</td>
<td>-0.47</td>
</tr>
<tr>
<td>SLMAP</td>
<td>-0.45</td>
<td>-0.58</td>
<td>-0.34</td>
<td>CHST1</td>
<td>-0.3</td>
<td>-0.63</td>
<td>-0.24</td>
</tr>
<tr>
<td>GN5B</td>
<td>-0.44</td>
<td>-0.5</td>
<td>-0.59</td>
<td>SH3BGR3</td>
<td>-0.29</td>
<td>-0.23</td>
<td>-0.48</td>
</tr>
<tr>
<td>PDE10A</td>
<td>-0.43</td>
<td>-0.86</td>
<td>-0.94</td>
<td>281045611RIK</td>
<td>-0.29</td>
<td>-0.51</td>
<td>-0.29</td>
</tr>
<tr>
<td>HRBL</td>
<td>-0.43</td>
<td>-0.4</td>
<td>-0.45</td>
<td>MYO18A</td>
<td>-0.28</td>
<td>-0.25</td>
<td>-0.4</td>
</tr>
<tr>
<td>RHOBTB2</td>
<td>-0.42</td>
<td>-0.34</td>
<td>-0.57</td>
<td>SRM</td>
<td>-0.27</td>
<td>-0.61</td>
<td>-0.6</td>
</tr>
<tr>
<td>RXRG</td>
<td>-0.42</td>
<td>-0.43</td>
<td>-0.59</td>
<td>PDE7B</td>
<td>-0.27</td>
<td>-0.44</td>
<td>-0.65</td>
</tr>
<tr>
<td>ZFP238</td>
<td>-0.42</td>
<td>-0.52</td>
<td>-0.47</td>
<td>TPM2</td>
<td>-0.27</td>
<td>-0.25</td>
<td>-0.59</td>
</tr>
<tr>
<td>ADRA2C</td>
<td>-0.42</td>
<td>-0.67</td>
<td>-0.32</td>
<td>RARB</td>
<td>-0.27</td>
<td>-0.46</td>
<td>-0.31</td>
</tr>
<tr>
<td>FCHO1</td>
<td>-0.42</td>
<td>-0.44</td>
<td>-0.35</td>
<td>DRD2</td>
<td>-0.26</td>
<td>-0.48</td>
<td>-0.96</td>
</tr>
<tr>
<td>PPI1CA</td>
<td>-0.41</td>
<td>-0.66</td>
<td>-0.3</td>
<td>2610039E05RIK</td>
<td>-0.26</td>
<td>-0.33</td>
<td>-0.7</td>
</tr>
<tr>
<td>EPHX1</td>
<td>-0.4</td>
<td>-0.32</td>
<td>-0.6</td>
<td>CLP1</td>
<td>0.2</td>
<td>0.26</td>
<td>0.94</td>
</tr>
<tr>
<td>SEC14L1</td>
<td>-0.39</td>
<td>-0.25</td>
<td>-0.73</td>
<td>BC008155</td>
<td>0.2</td>
<td>0.27</td>
<td>0.38</td>
</tr>
<tr>
<td>KSCANB1</td>
<td>-0.39</td>
<td>-0.75</td>
<td>-0.48</td>
<td>FBL</td>
<td>0.2</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>ITPIKA</td>
<td>-0.39</td>
<td>-0.38</td>
<td>-0.34</td>
<td>B430104H02RIK</td>
<td>0.2</td>
<td>0.5</td>
<td>0.56</td>
</tr>
<tr>
<td>RIN1</td>
<td>-0.39</td>
<td>-0.63</td>
<td>-0.27</td>
<td>BIN1</td>
<td>0.2</td>
<td>0.26</td>
<td>-0.23</td>
</tr>
<tr>
<td>AP1S1</td>
<td>-0.38</td>
<td>-0.52</td>
<td>-0.52</td>
<td>TIMM10</td>
<td>0.21</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>HOME1</td>
<td>-0.38</td>
<td>-0.81</td>
<td>-0.36</td>
<td>PCDH10</td>
<td>0.23</td>
<td>0.35</td>
<td>0.66</td>
</tr>
<tr>
<td>EPB4.9</td>
<td>-0.38</td>
<td>-0.23</td>
<td>-0.22</td>
<td>XPA</td>
<td>0.23</td>
<td>0.27</td>
<td>0.4</td>
</tr>
<tr>
<td>IVNS1ABP</td>
<td>-0.38</td>
<td>-0.5</td>
<td>-0.42</td>
<td>6330569M22RIK</td>
<td>0.24</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>DCTN3</td>
<td>-0.38</td>
<td>-0.3</td>
<td>-0.27</td>
<td>BE2X</td>
<td>0.25</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>IL17RC</td>
<td>-0.37</td>
<td>-0.53</td>
<td>-1.23</td>
<td>GOLGA2</td>
<td>0.26</td>
<td>0.61</td>
<td>0.3</td>
</tr>
<tr>
<td>IERL5</td>
<td>-0.37</td>
<td>-0.58</td>
<td>-0.84</td>
<td>GDI1</td>
<td>0.26</td>
<td>0.5</td>
<td>0.32</td>
</tr>
<tr>
<td>PITPNM2</td>
<td>-0.37</td>
<td>-0.45</td>
<td>-0.51</td>
<td>NAGK</td>
<td>0.27</td>
<td>0.52</td>
<td>0.51</td>
</tr>
<tr>
<td>CAR11</td>
<td>-0.36</td>
<td>-0.43</td>
<td>-0.44</td>
<td>PSM1</td>
<td>0.28</td>
<td>0.49</td>
<td>0.521</td>
</tr>
<tr>
<td>INDO</td>
<td>-0.36</td>
<td>-0.53</td>
<td>-0.72</td>
<td>DBERTD354E</td>
<td>0.29</td>
<td>0.27</td>
<td>0.38</td>
</tr>
<tr>
<td>ACY1</td>
<td>-0.35</td>
<td>-0.3</td>
<td>-0.8</td>
<td>330001P08RIK</td>
<td>0.3</td>
<td>0.39</td>
<td>0.36</td>
</tr>
<tr>
<td>PPP1R1B</td>
<td>-0.35</td>
<td>-0.66</td>
<td>-1.02</td>
<td>LRRN3</td>
<td>0.31</td>
<td>0.5</td>
<td>0.54</td>
</tr>
<tr>
<td>GABRD</td>
<td>-0.35</td>
<td>-0.63</td>
<td>-0.78</td>
<td>GNG4</td>
<td>0.4</td>
<td>0.25</td>
<td>0.92</td>
</tr>
<tr>
<td>MYOSA</td>
<td>-0.35</td>
<td>-0.6</td>
<td>-0.53</td>
<td>RBM3</td>
<td>0.44</td>
<td>0.55</td>
<td>0.66</td>
</tr>
<tr>
<td>ABLIM2</td>
<td>-0.35</td>
<td>-0.41</td>
<td>-0.35</td>
<td>PCDH20</td>
<td>0.5</td>
<td>0.26</td>
<td>1</td>
</tr>
</tbody>
</table>

The top-ranked gene expression changes present in all three mouse models are shown according to UniGene ID symbol, along with a color-coded designation of direction and magnitude of change.
Table 3. Canonical pathways associated with shared and unique expression profiles of HD mice

<table>
<thead>
<tr>
<th>Pathway</th>
<th>HD Mouse Expression Profile</th>
<th>HD Mouse Expression Profile</th>
<th>HD Mouse Expression Profile</th>
<th>HD Mouse Expression Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DE5</td>
<td>R6/2-Q150</td>
<td>R6/2-Q300</td>
<td>DE5 only</td>
</tr>
<tr>
<td>Dopamine Receptor Signaling</td>
<td>PPP2RSC, PPP1R1B, PPP2R5D, PPP1M1, PPP1CA, DRD2</td>
<td>PPP1R14C, PPP1R1B, PPP2R2A, PPP2R5D,PPP1R3C, PPP1C, SLC1A8, DRD2, PPP2R5A,TH, PPP2R4, ADCYS, PRKAR1B, PPP1R12A, PPP1CA</td>
<td>ADCY9, GCH1, PPP1R1B, PPP2CA, PPP2R2A, PPP2R5D,PPP1R3C, PPP1C, SLC1A8, PPP1R14A, DRD2, COMT, SPR, DDR2, PPP2R5E, PPP1CA</td>
<td>NS</td>
</tr>
<tr>
<td>Glutamate Receptor signaling</td>
<td>SLC17A6, GRM8, HOMER1, GNG7</td>
<td>NS</td>
<td>CAMK4, GRM1, GRIAT, CALM2, SLC1A1, GRIP1, GRM4, GNG7, GN1, GRIK5, GRIK2C, GLUL, SLC1A2, HOMER1</td>
<td>SLC17A6, GRM8</td>
</tr>
<tr>
<td>Calcium Signaling</td>
<td>RAP1B, TNNT1, CHRNA4, RACAN2, ACTA2, TPM2, TRPC4, ITPR1, MYL6B, ATP2A, EP300, CHRN8B, HADC11, RYR1, MEF2C, ACTA1</td>
<td>TNNT1, CAMK1, MYL6, TNNT1, RACAN1, MAPK1, MAP2K2, MAPK1, GAB1, RRAS, PIK3C2G, HSPB8, HRAS, HERPUD1, JUN, MGST2, MAP2K2, KEAP1, STIP1, DNAJC8, VCP, PRKCH, DNAJB5, CBR1, MGST3, EPHX1, PRKCB</td>
<td>TNNT1, CAMK4, GRIAT, CREBBP, HADC1, CREB3, TNNT2, MAPK6, SLC8A3, CALM2, TPM2, MAPK12, ATP2A2, ATP2B2, TRPC7, CAMK2A, GRIN2C, HADC11, CAMK1, RYR3, RYR1, MMP3C, CAMK2</td>
<td>RAP1B, CHRNA4, RACAN2, ACTA2, TPM2, MEF2C, ACTA1, EP300</td>
</tr>
<tr>
<td>Mitochondrial Dysfunction</td>
<td>MAP2K4, COX17, COX6A1, PRDX5, GPD2, MAPK10, UQCRB, OGDH, SNA, COX7A1, TXNRD2, NDUF2A</td>
<td>UQCRH, NDUF3, CASP9, NDUF11, PRDX5, NDUF6, NDUF3, HTRA2, GPD2, UQCRH, NDUF3, PSE1</td>
<td>NDUF3, CASP9, NDUF3, MAPK9, BACE2, OGDH, MAPK12, COX7A1, NDUF3, AIMF1</td>
<td>NDUF3, CASP9, NDUF3, AIMF1</td>
</tr>
<tr>
<td>Oxidative Phosphorylation</td>
<td>NDUFC1, ATP6V1C2, COX17, COX6A1, NDUFC2, TCIRG1, ATP5L, UQCRB, COX7A1, NDUF2A</td>
<td>UQCRH, NDUF3, NDUF11, ATP5G1, NDUF6, ATP5H, ATP6V0D1, NDUF9, ATP5G2, ATP6V1G2, ATP6AP1, NDUF3</td>
<td>NDUF11, SNCA, NDUFA1, SNCA, ATP5K1, MAPK9, BACE2, OGDH, MAPK12, COX7A1, NDUF3, AIMF1</td>
<td>NDUF11, SNCA, ATP5K1, MAPK9, BACE2, OGDH, MAPK12, COX7A1, NDUF3, AIMF1</td>
</tr>
<tr>
<td>NRF2-mediated Oxidative Stress Response</td>
<td>MAP2K4, GSTA3, GSTM1, USP14, ACTA2, DNAJC6, HERPUD1, GTO1, EP300, CUL3, GSTA4, UBE2K, MRAS, ACTA1, PRKCD1, EPXH1</td>
<td>GSTA3, USP14, MAPK1, DNAJB4, RRAS, PIK3C2G, HSPB8, HRAS, HERPUD1, JUN, MGST2, MAP2K2, KEAP1, STIP1, DNAJC8, VCP, PRKCH, DNAJB5, CBR1, MGST3, EPHX1, PRKCB</td>
<td>GSTA3, GSTM1, CREBBP, DNAJB4, RRAS, PIK3R3, RRAS2, DNAJC8, PIK3R2, AOXI, GSK3B, EPHX1, PRKCA, PRKCB</td>
<td>NS</td>
</tr>
<tr>
<td>Neurotrophin/TRK signaling</td>
<td>MAP2K4, CDC42, NTRK3, MRAS</td>
<td>JUN, MAP2K2, MAPK1, GAB1, RRAS, PIK3C2G, HRAS</td>
<td>PIK3R3, RRAS2, CDC42, RRAS, NTRK3, CREBBP, DNAJB4, RRAS, PIK3R3, MAPIK12</td>
<td>MAP2K4, MAPK7, PIK3R3, RRAS2, CDC42, RRAS, NTRK3, CREBBP, DNAJB4, RRAS, PIK3R3, MAPIK12</td>
</tr>
<tr>
<td>PPAR Signaling</td>
<td>NR2F1, NR2F1A, PDGFA, MRAS, NCOR1, RXRA, MAP3K7P1, PPARGC1A, EP300</td>
<td>JUN, MAP2K2, MAPK1, HSP90A1, RRAS, HRAS, NCOR1</td>
<td>MAP2K14, NR2F2, mapk14, RRAS, CREBBP, MAPK6, NR1H3, HRAS, TXNFRSF11B</td>
<td>MAP2K14, NR2F2, MAPK14, RRAS, CREBBP, MAPK6, NR1H3, HRAS</td>
</tr>
</tbody>
</table>

Canonical pathways analysis was run using Ingenuity Systems Pathway Analysis. Those pathways significantly associated with transcriptome profiles of the indicated condition are shown. Genes are indicated by their Official UniGene symbol. NS, not significant.
ABBREVIATIONS

BDNF, brain-derived neurotrophic factor

GO, gene ontology

HD, Huntington’s disease

Htt, huntingtin

MSN, medium spiny neuron
A. DE5 vs. R6/2-Q150 transgenic mice

B. DE5 vs. R6/2-Q300 transgenic mice

FIGURE 1
FIGURE 2

Down-regulated genes

DE5 transgenic Mice (825)

R6/2-Q150 (1233)

R6/2-Q300 (1364)

Up-regulated genes

DE5 transgenic Mice (758)

R6/2-Q300 (1433)

R6/2-Q150 (1229)
FIGURE 3

Down-regulated genes

Up-regulated genes

DE5 transgenic Mice (825)

Hdh(Q92/Q92) Mice (1498)

CHL2(Q150/Q150) Mice (1488)

540

37 168

1156

225 1015

DE5 transgenic Mice (756)

Hdh(Q92/Q92) Mice (1617)

CHL2(Q150/Q150) mice (1520)

537

41 152

1408

142 1200
FIGURE 4

[Bar chart showing gene categories for different conditions.]

GO category
FIGURE 6

Microarray

qPCR

Expression Value (Log2 transformed)

Expression Level (Hprt normalized)