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Recent genome-wide association studies (GWAS) have identified a number of novel genetic associations
with complex human diseases. In spite of these successes, results from GWAS generally explain only a
small proportion of disease heritability, an observation termed the ‘missing heritability problem’. Several
sources for the missing heritability have been proposed, including the contribution of many common var-
iants with small individual effect sizes, which cannot be reliably found using the standard GWAS approach.
The goal of our study was to explore a complimentary approach, which combines GWAS results with func-
tional data in order to identify novel genetic associations with small effect sizes. To do so, we conducted a
GWAS for lymphocyte count, a physiologic quantitative trait associated with asthma, in 462 Hutterites. In par-
allel, we performed a genome-wide gene expression study in lymphoblastoid cell lines from 96 Hutterites. We
found significant support for genetic associations using the GWAS data when we considered variants near
the 193 genes whose expression levels across individuals were most correlated with lymphocyte counts.
Interestingly, these variants are also enriched with signatures of an association with asthma susceptibility,
an observation we were able to replicate. The associated loci include genes previously implicated in
asthma susceptibility as well as novel candidate genes enriched for functions related to T cell receptor sig-
naling and adenosine triphosphate synthesis. Our results, therefore, establish a new set of asthma suscep-
tibility candidate genes. More generally, our observations support the notion that many loci of small effects
influence variation in lymphocyte count and asthma susceptibility.

INTRODUCTION

One general observation emerging from genome-wide associ-
ation studies (GWAS) of complex human diseases is that
common genetic variants can typically account for only a
small fraction of the overall disease heritability (1,2). This
observation is often referred to as the ‘missing heritability’
property of GWAS (1,3–8). Several possible sources for
missing heritability have been discussed in the literature

(1,4,7,8), including contributions from untyped rare variants,
epistatic interactions between loci and gene-by-environment
interactions. It is also widely acknowledged that many
common variants associated with complex diseases remain un-
discovered (5,9,10). As a result, the potential contribution of
rare variation and different types of interactions notwithstand-
ing, a certain proportion of the missing heritability is likely to
be explained by the additive contribution of a large number of
small-effect common variants, which are yet to be identified.
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Uncovering additional common variants that are associated
with disease, with a smaller effect size than those already
found using the standard GWAS approach, will likely
require significantly increasing sample sizes. This prospect
becomes difficult to justify, however, as the expected effect
size of additional common variants diminishes. Illustrating
this point, a recent meta-analysis of human body mass index
(BMI) GWAS, including 250 000 subjects, identified 32 asso-
ciated single nucleotide polymorphisms (SNPs), accounting
for only 1.45% of variation in BMI (11). It was estimated
that while a 3-fold increase in sample size (to �750 000 sub-
jects) would have likely resulted in detection of 10 times as
many associations, the proportion of explained variance
would be expected to remain under 5%.

Even with sample sizes of hundreds of thousands of indivi-
duals, the problem is lack of power to distinguish between true
and spurious associations in a GWAS framework. An alterna-
tive approach is to integrate independent functional informa-
tion with GWAS results in order to separate the most likely
true associations from spurious signals. The rationale is
similar to that of the traditional ‘candidate gene approach’ in
principle, where prior functional information is used to
effectively limit the number of association tests and thereby
to increase power. Indeed, genome-wide functional data
have often been used to prioritize among GWAS results and
identify the most-promising candidates. For example, the
first GWAS for asthma, which resulted in the identification
of an associated genomic region containing 19 genes, used
gene expression data to hone in on the most promising candi-
date gene (12). Specifically, gene expression profiles in lym-
phoblastoid cell lines (LCLs) from a set of asthmatic
probands, their parents and siblings, was intersected with the
GWAS data, resulting in the implication of ORMDL3 as a
novel childhood asthma susceptibility gene (12). In this case,
the integration of functional data also suggested that regula-
tory variation impacting the expression level of ORMDL3
was the likely risk-conferring mechanism for the associated
variants. While subsequent studies have shown that the regu-
lation of nearby genes, such as GSDML, may also be affected
by the variant, the principle mechanism of regulatory variation
influencing gene expression levels has not been challenged
(13–16).

More generally, recent studies have shown that variants
associated with complex traits are often also associated with
variation in the expression levels of nearby genes (i.e. these
variants are also often classified as expression quantitative
trait loci, or eQTLs; 17–19). For example, Murphy et al.
(20) intersected a list of eQTLs found in CD4+ lymphocytes
from subjects with asthma with a list of loci that were reported
to be associated with complex human diseases. They found
119 eQTLs for genes harboring SNPs that were previously
associated with complex diseases, suggesting that in these
cases, changes in gene regulation may contribute to disease
susceptibility. Similarly, Zeller et al. (21) intersected eQTLs
identified in monocytes with GWAS results for cardiovascular
disease (CVD) risk factors. Using stringent statistical criteria,
they identified two eQTLs in genomic regions that were also
genetically associated with LDL cholesterol levels. The
observations of Zeller et al. suggest that genetically controlled

regulatory variation may play a role in determining variation
in LDL cholesterol levels, and ultimately CVD risk.

These studies successfully intersected gene expression pro-
files with independently obtained GWAS results to provide
further support for previously identified candidate loci. Poten-
tially, functional data such as gene expression measurements
and GWAS results can also be coupled in a combined analysis.
The goal would be to identify novel genetic associations with
weak effects, which cannot be distinguished from spurious
associations (due to low power) using a standard GWAS
approach alone. To date, we know of only few studies that
use this paradigm. Naukkarinen et al. (22), for example, col-
lected gene expression data in adipose tissue, and integrated
it with results from a GWAS for variation in BMI. Using
this approach, they identified 13 nominal genetic associations
(P , 0.05) near genes whose expression levels across indivi-
duals were correlated with variation in BMI. In turn, Zhong
et al. (23) used a similar rationale when they integrated
results from an eQTL mapping study with GWAS results for
type 2 diabetes (T2D). They found a cis eQTL SNP for the
gene ME1, which was also weakly associated with T2D
(below genome-wide significance). Subsequent work using
a mouse knockout model supported the role of ME1 in
determining susceptibility to T2D.

The results of these studies suggest that integrating gene
expression and GWAS data may be an effective filtering and
discovery approach, allowing one to uncover novel weakly
associated genetic variants using easily annotated functional
mechanisms. Here, we pursue a similar approach by lever-
aging gene expression data to identify candidate genes that
influence inter-individual variation in lymphocyte counts in
the Hutterites. The Hutterites offer a unique opportunity to
study genetic regulation of complex traits because extensive
data on a wide range of phenotypes and genome-wide geno-
type data for a large number of individuals are available for
this founder population. In addition, the communal lifestyle
practiced by the Hutterites leads to remarkably uniform envir-
onmental exposures (24). As lymphocyte counts were previ-
ously significantly associated (P ¼ 1 × 1024) with asthma in
the Hutterites (25), we also extended our approach to map
novel asthma susceptibility loci in an independent asthma
GWAS data set.

RESULTS

We designed a study to identify loci associated with inter-
individual variation in peripheral blood absolute lymphocyte
counts, an immunological quantitative trait, which is corre-
lated with asthma in the Hutterites (25). Our approach was
to integrate gene expression profiling with GWAS data
(Fig. 1; see Supplementary Material, Table S1 for summary
of results). Specifically, we conducted a GWAS for peripheral
blood lymphocyte counts in Hutterites, and characterized
genome-wide gene expression levels in LCLs from an
overlapping sample of Hutterites, chosen from the tails of
the lymphocyte count distribution in this population.
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GWAS for peripheral blood lymphocyte count
in Hutterites

To identify loci associated with lymphocyte counts, we con-
ducted a GWAS using lymphocyte counts from 462 Hutterite
subjects as the phenotypes, and genome-wide genotypes (using
the Affymetrix 500k array platform; see Materials and
Methods; 24,26,27). After filtering SNPs based on quality
control measures (Materials and Methods), 279 749 autosomal
SNPs remained. We tested for genetic association with lympho-
cyte counts using a general two-allele model (GTAM) test (24),
which accounts for the known relatedness between individuals in
our sample. A quantile–quantile plot did not indicate any
remaining population structure or global departures from the
null expectation (Supplementary Material, Fig. S1), and accord-
ingly, the genomic inflation factor was calculated to be only 1.03.

Using this approach, however, we did not find any associ-
ation that was significant at the genome-wide Bonferroni-
corrected threshold of 1.8 × 1027 (Fig. 2A; Supplementary
Material, Table S2). Nevertheless, some of the most strongly
associated SNPs are within or near genes that are involved
in cellular proliferation or lymphocyte function. For
example, the strongest signal [P-value ¼ 4.32 × 1027; false
discovery rate (FDR) ¼ 0.12] is at rs2746347 (Fig. 2B; Sup-
plementary Material, Table S2), a SNP located in the first
intron of PRKAA2 on chromosome 1. The gene product of
PRKAA2 is the catalytic subunit of the adenosine monopho-
sphate-activated protein kinase, an enzyme that regulates the
cell cycle in response to glucose availability (28), which is
up-regulated upon T cell receptor stimulation (29). The
second strongest signal is at rs881827 (Fig. 2C; Supplemen-
tary Material, Table S2), located within an intron of S100B.

This gene is thought to play a role in inflammatory responses
and is secreted by activated T lymphocytes (30). These obser-
vations suggest that our GWAS approach is underpowered to
identify loci with key roles in determining variation in
lymphocyte counts. While hypotheses could be constructed
for the relevance of many genes with marginally significant as-
sociation signals (Supplementary Material, Table S2), the fact
that we found no association at a genome-wide significance
level makes it unappealing to pursue these hypotheses based
on the GWAS data alone.

Gene expression profiling

Although we did not find clear associations in the GWAS data,
the physiologic trait ‘lymphocyte count’ does exhibit evidence
of heritability (H2 ¼ 0.41 in our GWAS population), implying
that genetic variation explains nearly half of the phenotypic
variation. We reasoned that some fraction of this genetic vari-
ation is likely to be regulatory in nature, as has been the case
for most studied complex traits to date. Therefore, in parallel
to the GWAS, we conducted a gene expression study in order
to identify gene regulatory differences that are correlated with
variation in lymphocyte counts across individuals.

To do so, we used Illumina HT-12 microarrays to interrogate
the expression level of 11 282 autosomal genes in RNA samples
from 96 Hutterite-derived LCLs (see Materials and Methods for
quality control and data processing steps and Supplementary
Material, Table S1 for the gene expression estimates for all
samples; one sample failed quality control, thus subsequent ana-
lysis was performed with 95 individuals). To maximize the
power of the study given the sample size, we chose individuals
from the two extreme tails of the Hutterite lymphocyte count

Figure 1. Study design. We performed a gene expression profiling study (1a) to identify differentially expressed genes between individuals with low and high
lymphocyte counts, as well as a GWAS (1b) to identify loci associated with lymphocyte counts. We integrated data from the two studies (2) to identify candidate
genes that would have been missed by the GWAS alone. Ultimately, we asked whether these candidate genes are also associated with asthma (3).
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distribution (Fig. 3). The samples we chose from each tail of the
distribution were balanced with respect to gender (24 males and
24 females chosen from each tail), age (mean age is 35.9+ 8.3
and 35.0+ 8.8 in samples chosen from each tail, respectively)
and relatedness (median kinship coefficient of samples from
each tail is 0.036).

To identify differentially expressed genes between individuals
with high or low lymphocyte counts, we employed a likelihood
ratio test within the framework of a fixed-effect linear model (see
Materials and Methods for more details). Using this approach,
we classified 33 genes as differentially expressed between the
two groups (FDR¼ 10%; Supplementary Material, Table S3).
While the set of genes identified as differentially expressed is
small, it is enriched with genes involved in relevant functions
based on Gene Ontology (GO) classifications, such as ‘alpha-beta
T cell differentiation’, and ‘alpha-beta T cell activation’ (at an
FDR , 0.04; Supplementary Material, Table S4). We found
enrichment of similar functions (including: ‘alpha-beta T cell re-
ceptor complex’, ‘T cell receptor complex’ and ‘T cell activation’;
see Supplementary Material, Table S5), even when we extended
our analysis to the 200 genes with the best evidence for differences
in expression levels between individuals with high or low lympho-
cyte counts (P , 0.005). This observation indicates that, much like
the GWAS results, our study is underpowered to identify all genes
whose regulation is associated with lymphocyte counts.

Integrating results from the GWAS and gene expression
data analysis

At the conclusion of the GWAS and gene expression profiling
studies discussed above, we obtained independently ranked

Figure 2. GWAS for lymphocyte count. (A) Manhattan plot displaying the 2log10 (P-values) for a GWAS of lymphocyte counts in 462 Hutterites. The top two
SNPs are circled. (B) Close-up of the region around the top SNP, rs2746347 (red point), which is located within the first intron of PRKAA2. The estimated
recombination rate (based on HapMap data) in the region is also plotted. (C) Close-up of the region around the second most significant SNP, rs881827 (red
point), located within an intron of S100B.

Figure 3. Choice of samples for the gene expression profiling study. A histo-
gram of the distribution of lymphocyte counts (x-axis; the transformed resi-
duals after correcting for age) for all available samples (gray bars) and for
the 96 individuals chosen for the gene expression profiling study (red bars).
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lists of (i) SNPs, ordered by the strength of association with
lymphocyte count and, (ii) genes, ordered by the strength of
the evidence for differences in expression levels between
individuals with high or low lymphocyte count.

Our goal was to integrate the two lists in order to test
whether genes tend to be ranked at the top of both lists
more often than expected by chance alone. We hypothesized
that SNPs that show evidence for a genetic association with
lymphocyte count by GWAS will often be in proximity to
genes that show independent evidence for differences in
expression levels between individuals with high or low
lymphocyte count. To test this hypothesis, we first paired
genes and nearby SNPs.

There are several possible arbitrary ways to do so, including
choosing the SNP closest to the transcription start site for each
gene, choosing the most highly ranked SNP (based on the
GWAS results) within a reasonable interval around each
gene, or calculating a summary statistic of all the SNPs in
an interval around each gene. These approaches, however,
are likely to result in a bias towards enrichment of top-ranked
pairs of SNPs and associated genes in genomic regions of high
gene or SNP density or in regions characterized by high
linkage disequilibrium (LD). As a result, the null expectation
for the overlap of top-ranked pairs of SNPs and associated
genes would be unclear.

Instead, we chose to pair genes and SNPs based on the evi-
dence that genetic variation at a SNP contributes to regulatory
variation of the gene. Specifically, for each of the 11 282 genes
that were considered in the expression study, we identified the
SNP that was most correlated with variation in expression
levels among all nearby SNPs (i.e. within 150 kb of the

gene). These SNPs can be broadly thought of as the best cis
eQTL for each gene, even though, as expected, the evidence
supporting the eQTL for many genes is quite weak (e.g. only
54% of genes have at least a nominally associated eQTL; Sup-
plementary data, Fig. S2). Importantly, since we did not rely on
a statistical cutoff to classify these eQTLs (by definition, we
designated exactly one SNP as the cis eQTL for each gene),
our approach is not susceptible to biases due to SNP density
or LD structure (for example, we are not more likely to identify
eQTLs in regions of high SNP density—as typically is the
case—because we always classify one eQTL SNP for each
gene). In this case, if we only consider the GWAS P-values
associated with the classified cis eQTL SNPs (namely, we do
not consider all genotyped SNPs but exactly one SNP per
gene), we expect that under the null the P-values would be
drawn from the uniform distribution.

We thus tested the null hypothesis that SNPs classified as
eQTLs for the genes ranked at the top of the list based on
the evidence for differences in expression levels between indi-
viduals with high or low lymphocyte count are not more likely
to be ranked at the top of the independent list based on the
strength of the genetic association with lymphocyte count.
Because slightly different sets of SNPs met quality control
thresholds in the two studies, we limited the analysis to 10
239 of the 11 282 expressed genes (see Materials and
Methods for details). To determine the number of gene-SNP
pairs to be considered in this analysis, we calculated the
median GWAS P-value for increasingly larger subsets of
top-ranked genes. Using this approach, we were able to
reject the null hypothesis. For example, we found that for
the top 33 genes, the median GWAS P-value of the associated

Figure 4. Integrating the GWAS and gene expression profiling studies. (A) The median lymphocyte count GWAS P-value (y-axis) for an expanding window of
genes is plotted in red. Genes are ordered by the strength of evidence supporting differences in expression level between individuals with low and high lympho-
cyte counts. The blue curves indicate the confidence interval for median P-values for random sets of genes at each test set size (based on 10 000 permutations).
(B) A box plot of the distribution of median lymphocyte count GWAS P-values for random sets of 193 genes (based on 10 000 permutations). The whiskers
extend to the 5th and 95th percentile. Black points indicate the observed medians outside this range. The red ‘X’ indicates the median P-value observed for
the top 193 differentially expressed genes.
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cis eQTL SNPs is 0.28, which is much lower than the genome-
wide (i.e. for all cis eQTL SNPs) median GWAS P-value of
0.50 and significantly lower than expected for a random
set of 33 genes (by permutation, P ¼ 0.006; Fig. 4; Supple-
mentary data, Table S6). When we considered larger
window sizes, we found that the most significant enrichment
was at 193 genes, with a median GWAS P-value of the asso-
ciated SNPs of 0.39 (by permutation, P ¼ 8 × 1024; Fig. 4;
Supplementary data, Table S6).

The evidence for a genetic association with each of these
193 genes individually is weak, as expected given that the ori-
ginal GWAS uncovered no genome-wide significant associa-
tions and that we are considering the evidence of association
at only one SNP for each gene. Yet, while the proportion of
GWAS P-values that are smaller than the nominal threshold
of 0.05 among all cis eQTLs is 5.3% (as expected for a well-
calibrated test), we find a significant enrichment (9.3%; hyper-
geometric P ¼ 0.014) of P-values meeting this threshold for
the cis eQTL SNPs associated with the 193 genes. We also
observe that the GWAS P-values for the cis eQTL SNPs of
117 (60.6%) of the 193 genes (hypergeometric P , 0.002;
Supplementary data, Table S6) are smaller than the genome-
wide median P-value of 0.50.

The list of SNPs that are genetically associated with
lymphocyte count and the list of genes whose expression
levels differ between individuals with high or low lymphocyte
count were generated independently. Thus, the enrichment of
gene-SNP pairs that are associated with low P-values in both
lists is likely to be biologically significant. In particular, given
this mutual corroboration, a possible model is that changes in
the regulation of at least a subset of the 117 genes (those asso-
ciated with a GWAS P-value that is smaller than the genome-
wide median) may have a role in the regulation of lymphocyte
count.

Integrating results from a GWAS for asthma

Lymphocyte counts were previously identified as an
asthma-associated phenotype in the Hutterites (25). We there-
fore further hypothesized that the set of 117 genes that show
evidence for an association with lymphocyte count will also
be associated with susceptibility to asthma.

To test this hypothesis, we used results from the GABRIEL
study, a consortium-based meta-analysis of asthma GWAS
using 10 365 cases and 16 110 controls of European descent
(31). We used the same integration approach described for
the lymphocyte count GWAS. We were able to reject the
null hypothesis that the asthma GWAS P-values for cis
eQTL SNPs paired with the 117 lymphocyte count-associated
genes were drawn from a null distribution (by permutation,
P ¼ 0.02; Fig. 5). Consistently, we found an enrichment of
GABRIEL GWAS P-values smaller than 0.05 in the set of
117 genes (9.4%) compared with the corresponding well-
calibrated genome-wide proportion of such P-values (5.3%;
hypergeometric P ¼ 0.044; Supplementary data, Table S6).
These observations suggest that a subset of these 117 genes
may be mediating asthma pathogenesis through changes in
gene regulation, which affect lymphocyte activation.

As replication is considered the gold standard in confirming
association results, we also sought to replicate our findings in

another asthma study. To do so, we analyzed results from the
EVE study, an independent meta-analysis of asthma GWAS
in North American subjects of diverse ethnicities (32). Follow-
ing the same approach as that outlined for the analysis of the
GABRIEL data set, we were again able to reject the null hy-
pothesis that asthma GWAS P-values for variants classified
as cis eQTL for the 117 candidate genes were drawn from the
genome-wide null distribution (by permutation, P ¼ 0.027;
Fig. 5). The independent replication of our results serves as
strong evidence that at least a subset of these candidate genes
plays an important role in asthma risk.

DISCUSSION

Our study was motivated by the observations of ‘missing her-
itability’ in GWAS for complex human diseases (1–9).
Several non-mutually exclusive explanations for the missing
heritability have been proposed (1,4,7,8), including the
hypothesis that disease susceptibility is genetically determined
by a large number of common variants with small effects,
which cannot be reliably identified using standard GWAS
approaches. In the case of asthma, some measure of support
for this hypothesis is provided by the observation that
already in 2006 (prior to the first GWAS for asthma) variation
in more than 100 genes was implicated in asthma susceptibil-
ity (33), yet many variants show only weak associations that
have often proved difficult to replicate (34–36).

In order to find novel candidate asthma genes, we used a
combination of approaches, aimed at facilitating the identifica-
tion of loci that are associated with asthma based on only weak
statistical support, yet nevertheless are likely to be true posi-
tives. One important property of our study is the focus on an
intermediate quantitative trait, lymphocyte counts, which is

Figure 5. Integrating results with asthma meta-analyses. Box plots of the dis-
tribution of median GABRIEL meta-analysis P-values and median EVE
meta-analysis P-value for random sets of 117 genes (based on 10 000 permuta-
tions). The whiskers extend to the 5th and 95th percentiles. Black points indi-
cate the observed medians outside this range. For each box plot, the red ‘X’
indicates the median P-value observed for the 117 genes carried forward
based on the analysis of association with lymphocyte counts.
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associated with asthma in the Hutterites (25). By identifying
genes that influence variation in lymphocyte counts, we
hoped to obtain simultaneous information on both the genetic
architecture and the relevant functional mechanisms that are
involved in the pathogenesis of asthma.

We performed our GWAS for lymphocyte counts using a
modest sample size (462 individuals). As might be expected,
we did not find any strong genetic association with the trait.
This is consistent with the results of three much larger
recent studies (with �15 000–20 000 subjects each), which
also reported GWAS results in different populations for a
number of blood differential counts, including lymphocyte
count (37–39). Only the largest study (using almost 20 000
subjects of European ancestry) was able to identify genome-
wide significant associations (at two genomic regions on chro-
mosomes 6p and 19p) with lymphocyte count. Neither region
was implicated in the analyses presented in our study, yet our
study was not well suited to test for replicated association in
these genomic regions. Indeed, the region on chromosome
6p is not well represented on the Affymetrix array platform
that we used for genotyping (nor are any SNPs in strong
LD), and the gene on chromosome 19p does not seem to be
expressed in LCLs.

We also conducted a gene expression profiling study, using a
sample size of 95 individuals, which resulted in the identification
of only a small number of differentially expressed genes
between individuals with low and high lymphocyte counts. We
performed the gene expression study in Epstein-Barr virus
(EBV)-transformed LCLs, which have been previously shown
to be a useful model of gene regulatory phenotypes
(12,17,19,40–44). It should be noted that both EBV transform-
ation and cell line-specific artifacts can affect gene expression
patterns (45–49). However, EBV transformation-driven expres-
sion patterns shared by all cell lines would not be classified as
segregating with variation in lymphocyte counts. Furthermore,
cell line-specific artifacts may increase the overall population
variation in gene expression levels, but it is highly unlikely
that these artifacts will stratify individuals based on their
primary lymphocyte counts. Thus, the use of LCLs may result
in reduced power to detect genes that are differentially expressed
between individuals with high or low lymphocyte counts.
However, genes with expression patterns associated with
lymphocyte counts are more likely to be true positives than a
private property of LCLs.

The results of the independent GWAS and gene expression
profiling studies indicate that they are individually underpow-
ered. In other words, it is difficult to distinguish true genetic
associations and gene regulatory differences from spurious
patterns in the GWAS and gene expression profiling studies,
respectively. We therefore integrated data across the two
independent studies.

Our rationale was simple: if the ranked lists resulting from
the two studies do not reflect true biologically meaningful pat-
terns, the intersection of these studies would be equivalent to
picking loci at random. In other words, the overlap of genes
with marginal statistical support for an expression level differ-
ence between individuals with low or high lymphocyte counts
on the one hand, and loci with marginal support for a genetic
association on the other hand, would be no better than that
expected by chance alone. Our findings, however, supported

the notion that the overlap is higher than expected by
chance. Indeed, we identified a set of 117 genes that are
likely to play a role in determining variation in lymphocyte
counts through changes in gene regulation. Because our test
relied on choosing exactly one eQTL for each gene, our ap-
proach resulted in the inclusion of weakly associated SNPs
with both gene expression and lymphocyte count. On the
one hand, this approach was more resistant to possible
sampling biases (e.g. due to spurious signals from gene- or
SNP-dense regions of the genome). On the other hand, we
acknowledge that this property of our study also limits the
ability to explain any individual association by a regulatory
change affecting a nearby gene. That said, the evidence for as-
sociation with lymphocyte count was significantly stronger for
the subset of genes found using our approach compared with
the null expectation when we considered genes expressed in
LCLs but not included in our test set. This observation
provides overall support for a connection between the most
significant GWAS loci and variation in gene regulation.

We then extended these results to asthma, the phenotype
of primary interest. When we considered the GABRIEL
meta-analysis data, we found significant evidence supporting
a role for the same 117 genes in asthma susceptibility, likely
mediated by their influence on the numbers of circulating
immune cells. We were also able to replicate these observa-
tions using results from the EVE consortium meta-analysis
of asthma GWAS, which firmly supports the set of 117 loci
as promising asthma candidate genes.

It is of course likely that only a subset of these 117 genes is
involved in asthma pathogenesis for some of the same reasons
detailed above. However, disentangling the contribution of
any one gene is difficult and will require additional efforts,
including functional assays, which are beyond the scope of
the current study. An initial step in further characterizing the
regulation of these candidate genes would be to profile their
expression pattern in peripheral blood samples from asth-
matics and healthy controls.

Our observations, however, are already informative in the
context of previous work. Specifically, we looked for
overlap between our candidate genes and those genes listed
under the search term ‘asthma’ by the HuGE Navigator Pheno-
pedia, an online database organized by disease that sum-
marizes genetic association studies (http://hugenavigator.net/
HuGENavigator/startPagePhenoPedia.do, accessed 02 June
2011; 50). The HuGE Phenopedia database serves as a
catalog of genes that were listed in association studies of dif-
ferent diseases. Many genes are included when they are men-
tioned in relevant publications, regardless of whether an
association was identified, replicated or confirmed. As such,
inclusion in this database cannot be taken as strong evidence
that the genes are indeed associated with asthma. On the
other hand, the genes listed in this database are not a
random collection either. Accordingly, when we considered
only genes detected as expressed in LCLs as the background,
we found a significant 2.2-fold enrichment (9.4%; hypergeo-
metric P ¼ 0.008) of our 117 candidate genes listed in the
HuGE database as asthma putative candidate genes (the 11
genes listed were: PTGER4, MUC1, IL10RA, TNFRSF25,
TNFSF10, CD3E, MST1, CXCL13, GNLY, CNOT6L, GRK4).
Interestingly, if we were to consider the larger set of 193
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genes associated with lymphocyte counts, the enrichment of
genes also listed in the HuGE database as previously evaluated
for genetic associations with asthma is even more pronounced
(12.4%, or nearly a 3.1-fold enrichment; hypergeometric
P ¼ 1.0 × 1026). While some of these annotations will not
ultimately prove to be true positive associations, these obser-
vations of enrichment in our candidate gene set provides
further support for the role of these genes in asthma suscepti-
bility. In addition, this observation provides further support for
our overall approach, as it indicates that we uncovered a set of
likely asthma candidate genes.

Several genes on our candidate list may be particularly
promising although they may not have previously been impli-
cated as asthma candidate genes. For example, BCL11B, a tran-
scription factor recently identified as a regulator of T cell
lineage commitment and T cell identity maintenance (51),
has been implicated in a variety of leukemias (52) and a
model of inflammatory bowel disease (53), but to our knowl-
edge has not previously been assessed for a role in asthma
pathogenesis. The downstream regulatory targets of BCL11B
have not yet been globally identified in T cells. A natural
follow-up study would therefore be to couple gene expression
and chromatin immunoprecipitation-sequencing (ChIP-seq)
data to identify potential regulatory differences between asth-
matics and healthy controls in primary T cells. Likewise,
EZH2, the component of the polycomb group (PcG) respon-
sible for catalyzing histone 3 lysine 27 tri-methylation, a re-
pressive chromatin mark (54), is among our candidate genes.
Remarkably, hematopoietic stem cells in the bone marrow of
adult mice lacking Ezh2 fail to properly undergo lymphopoiesis
(55), suggesting that variation in the basal level of expression
of this chromatin modifier could potentially influence lympho-
cyte counts. PcG targets are known to be tissue-specific (56; in
fact, mouse embryonic stem cells lacking Ezh2 give rise to a
different phenotype), and so further studies of variation in regu-
latory targets of the PcG would be most valuable. For example,
ChIP-seq across a panel of induced pluripotent stem cells from
asthmatics and healthy controls could potentially identify dif-
ferential targets influencing lymphocyte counts and even
asthma susceptibility.

As a whole, the set of 117 loci is enriched with genes
involved in biological functions and pathways that are
expected to have an immune-mediated impact on asthma,
while pointing to novel candidates (Supplementary data,
Table S7). For example, we find enrichment for genes
involved in T cell receptor signaling (including CD3E,
CD3G, CD8A, LAT and LCP2) and mitochondrial adenosine
triphosphate (ATP) synthesis (including ATP5H, ATP5I and
ATP5L). These annotations fit intuitively with the regulation
of lymphocyte counts. Lymphocyte homeostasis (in particular,
T cell homeostasis) is influenced by T cell receptor interac-
tions at multiple stages of T cell development, including
thymic selection, naı̈ve T cell homeostasis and T cell response
to stimulation (57). In addition, cellular proliferation, a central
process of the lymphocyte response to antigen, is energetically
taxing, and there is evidence suggesting that the metabolic
pathways activated in T cells can influence not only sensitivity
to apoptotic signals, but lineage decisions as well (58,59).
These functional annotations also potentially fit well with a
role for these genes in asthma pathogenesis, as the classical

paradigm for asthma involves a dysregulated T cell response
in the airways (60–62). On the one hand, variation influencing
the quantity of T cell receptor adaptor and co-receptor proteins
in lymphocytes could potentially affect basal levels of
lymphocytes as well as their propensity to become activated.
On the other hand, a vigorous proliferative response requires
energy, and lineage decisions and apoptosis signaling influ-
enced by variation in metabolism could potentially have
phenotypic consequences.

Put together, our results indicate that a combination of
GWAS and functional molecular data on a genome-wide
scale can be used to uncover additional disease-related genes
with likely small-effect sizes. This approach can be easily
adapted to many phenotypes, the major limitation being the
availability of suitable samples for the expression studies.
Going forward, it will be important to apply this approach to
a variety of intermediate quantitative phenotypes relevant to
asthma and other diseases sharing a dependence on lympho-
cytes for their pathogenesis.

MATERIALS AND METHODS

The current study was performed as part of a long-term
research program on the genetic basis for complex phenotypes
in the Hutterites (63–66). During this time, phenotypes and
genotypes were collected in different phases and by using mul-
tiple platforms (typically the most cutting edge technology
available at the time). The lymphocyte count data used in
our GWAS were collected between 1996 and 1997 (25). The
choice of individuals for our gene expression profiling study
(48 individuals from each tail of the lymphocyte count distri-
bution) was based on phenotypes collected on an overlapping
sample of individuals studied between 2006 and 2009.
Samples from 36 individuals were included in both the
GWAS (n ¼ 462 individuals) and the gene expression study
(n ¼ 95 individuals).

Phenotype data

Lymphocyte counts for all subjects were determined in periph-
eral blood samples, using a differential blood count. Subjects
who reported taking antibiotics or steroids at the time of
blood collection were excluded. Measurements for the
GWAS were collected between 1996 and 1997, and the
lymphocyte count data were included in previous studies
(25,64). One clear outlier individual with a very low lympho-
cyte count (456 lymphocytes/ml) was removed from the study.
We note that 47 of the 462 individuals included in the GWAS
were diagnosed with asthma at the time of data collection.
Lymphocyte count measurements for the gene expression pro-
filing study were collected between 2006 and 2009. Fourteen
of the 95 individuals ultimately included in the expression
study were ever diagnosed with asthma. The absolute lympho-
cyte counts (cells/ml) were natural log-transformed and
age-adjusted within each study (GWAS and gene expression
profiling, respectively) separately.
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Genotype data

Genome-wide genotypes for individuals included in the
GWAS (n ¼ 462) were obtained using the Affymetrix Gene-
Chipw Mapping 500K Array Set [Affy 500k; Affymetrix,
Santa Clara, CA, USA; genotype data previously reported in
(65,66)]. Genotypes were called using BRLMM (http://
media.affymetrix.com/support/technical/whitepapers/brlmm_
whitepaper.pdf). Only SNPs with minor allele frequencies ≥
5%, call rates ≥ 95%, Hardy–Weinberg equilibrium
P-values ≥ 0.001 and fewer than five Mendelian errors
across all subjects genotyped on the Affy 500k set (regardless
of whether lymphocyte counts were available; n ¼ 695) were
included. SNP coordinates were re-annotated to the human
genome (hg18, March 2006) according to the dbSNP130
records obtained using UCSC (http://genome.ucsc.edu/; 67)
and Galaxy (http://main.g2.bx.psu.edu/; 68,69). After
quality control and remapping, 279 749 SNPs were included
in the GWAS.

Subjects included in the expression study were genotyped
on either the Affymetrix 500k Array Set, the Genome-Wide
Human SNP Array 5.0 or the Genome-Wide Human SNP
Array 6.0 (as mentioned above, this study is part of a long-
term project, during which individuals have been genotyped
using the best available platform at the time). Human SNP
Array 5.0 and 6.0 genotypes were called using Birdseed
(70). SNPs were excluded based on the same quality control
filters described above, except that they were calculated for
all individuals genotyped on any platform (n ¼ 1418). For
eQTL mapping, 246 010 SNPs passed all quality control
thresholds and 245 647 SNPs were re-annotated to the
human genome (hg18, March 2006 based on dbSNP130
records). 138 206 of those were classified as nearby (within
150 kb) at least one gene.

Gene expression data

Gene expression estimates were determined using RNA
samples from LCLs from 95 Hutterite individuals. The cells
were cultured at 378C and 5% CO2 in RPMI medium 1640
(containing L-glutamine) supplemented with 50 mg/ml genta-
micin and 20% fetal bovine serum. Total RNA was extracted
from each cell line using the RNeasy Mini Kit (Qiagen, Ger-
mantown, MD, USA). The quality and concentration of the
RNA (Supplementary data, Table S8) were assessed using
the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). Total RNA samples were sent to the South-
ern California Genotyping Consortium (SCGC) where they
were processed and hybridized to Illumina HT-12 v3 Expres-
sion BeadChips (Illumina, San Diego, CA, USA). Samples
were sent in two separate batches, which were balanced with
respect to lymphocyte count, sex, age and relatedness.

Probe intensity estimates were log2-transformed and quan-
tile normalized using the Bioconductor package ‘lumi’
(71,72) in the R statistical environment (http://www.r-p
roject.org/). The two batches of samples were first normalized
and assessed for quality separately. We then combined and
re-normalized the data from all arrays. While assessing the
quality of the data (Supplementary data, Figs S3–S5), one
sample was identified as a clear outlier and was removed

from the study (Supplementary data, Fig. S4). Quality
control steps also revealed two batch effects: one segregating
samples within the second batch of samples and one segregat-
ing the two batches in the combined data set. Because we
observed batch effects even after normalization (Supplemen-
tary data, Fig. S4), we explicitly regressed them out (as a
fixed effect) and the data were then re-normalized.

We excluded from subsequent analysis genes that were
likely not expressed in LCLs (any probe with a detection
P-value . 0.01 in all samples). Median probe intensity esti-
mates per gene were then used as the expression estimates
for 14 367 genes. We further excluded 3085 genes because
they were not associated with an hg18 RefSeq record or
were not autosomal. This resulted in a final data set of expres-
sion estimated for 11 282 genes (Supplementary data,
Table S1). In addition to the processed gene expression esti-
mates available in Supplementary data, Table S1, raw and nor-
malized expression data are available at the NCBI GEO
database with accession number GSE30697 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30697).

Statistical analysis

Genome-wide association study. In order to map genetic loci
associated with lymphocyte count, we used the GTAM associ-
ation test previously described in reference (73; see Supple-
mentary data, Fig. S1 for a quantile–quantile plot of the
GWAS results). Association testing is a two-step process. In
the first step, the heritability of lymphocyte count was calcu-
lated for the sample using a maximum likelihood-based vari-
ance component estimation method (74). The fit of different
models of heritability [environmental only (E), additive
genetic effects (A + E), dominance genetic effects (D + E)
or a full model (A + D + E)] were compared using the Bayes-
ian information criterion, and the best fitting model was
chosen (in our case, a model with additive and environmental
effects with no dominance effects). We estimated the heritabil-
ity of lymphocyte count in our sample to be 0.41. In the
second step, each SNP was tested for association with the
quantitative trait using a linear mixed-effects model frame-
work. The model, below, has previously been described in
detail (73):

y = Xb+ Gg+ g + e

Briefly, y is the vector of log-transformed lymphocyte counts.
X is a matrix of covariates (age and an intercept term in this
model) and b is a vector of the fixed-effect coefficients. G
reflects the number of copies of an allele at a given SNP,
while g, the main quantity of interest in this model, is the
effect size of each additional copy of that allele (we consider
an additive model at each SNP). g is a random effect account-
ing for the polygenic background, which is assumed to be
multivariate normally distributed with mean 0 and covariance
determined by the kinship coefficient, additive genetic
variance and dominance genetic variance. e accounts for the
residual (or environmental) error and is assumed to be normal-
ly distributed with mean 0 and s2

e variance. The two random
effects are weighted by the respective variance component
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estimates from the first step of the analysis (determining her-
itability). The plots shown in Fig. 2B and C were originally
created using LocusZoom (75).

Analysis of gene expression differences. To identify differen-
tially expressed genes between individuals with high and
low lymphocyte counts, we adopted a likelihood ratio test
approach within a fixed-effects linear model framework. We
used the following gene-specific model:

YExp = m+ bXExp + 1

YExp represents the vector of normalized expression estimates
for a particular gene across individuals. m is the mean gene ex-
pression level across all samples. XExp is an indicator variable
identifying the class (high or low lymphocyte count) to which
the sample belongs, while b is the fixed effect. 1 is an error
term assumed to be normally distributed with mean 0 and vari-
ance s2

Exp. To test for the effect of class membership on gene
expression levels, we compared the null model where all
samples are considered to be from the same class to an alter-
native where samples can be from one of two classes (see Sup-
plementary Material, Fig. S6 for the distribution of P-values
for the likelihood ratio test). Because the models are nested,
we assumed that the differences in log-likelihood between
the two models are x2-distributed with 1 degree of freedom.
The q values were estimated for P-values using the method
of Storey and Tibshirani (76).

Analysis of functional annotations enrichment. We identified
enriched gene annotation categories using GeneTrail (http://
genetrail.bioinf.uni-sb.de/; 77). We used all GO functional
annotations (78) and the KEGG pathways (79,80). When
testing for enrichments among the 33 and 200 most differen-
tially expressed gene sets (see Supplementary Material,
Tables S4 and S5), we used all 11 282 expressed autosomal
genes as a reference. In order to determine enrichments for
the 117 lymphocyte count candidate gene set (see Supplemen-
tary Material, Table S7), we used the 10 239 genes included in
the integrated analysis as a reference. P-values were deter-
mined based on the hypergeometric distribution, and the
FDR was estimated using the method of Benjamini and
Hochberg (81).

eQTL mapping. For the purposes of pairing genes and SNPs in
order to link the gene expression study to the GWAS, we selected
the proximal SNP (within 150 kb of the gene) with the best evi-
dence of being a cis eQTL. We used the R package, ‘ICE’ (82),
which maps eQTLs using a linear mixed-effects model frame-
work. ICE was designed to take into account covariance across
arrays that can lead to spurious trans-eQTL results. By replacing
the array covariance matrix with the additive covariance matrix
for the Hutterite pedigree, we were able to control for the additive
polygenic effect of interrelatedness. Variance components were
estimated using a restricted maximum likelihood method, and a
P-value for each SNP was calculated using an F-test. The prox-
imal SNP with the smallest P-value was then classified as the
‘eQTL’ for each gene.

Integrating the GWAS and expression profiling studies. To in-
tegrate our independent data sets, we assessed whether genetic
variation around genes that show the best evidence for differ-
ences in expression levels between individuals with high or
low lymphocyte count is also implicated as associated with
variation in lymphocyte count. To do so, we calculated the
median lymphocyte count GWAS P-value for an expanding
subset of gene–SNP pairs, after ordering genes based on the
evidence for differences in expression levels between indivi-
duals with high or low lymphocyte count. To test if the
observed median P-value is significantly lower than expected
by chance alone, given the number of genes in each subset, we
randomly sampled the same number of genes from the remain-
ing list of gene–SNP pairs and calculated the median GWAS
P-value 10 000 times. The level of significance (i.e. permuta-
tion P-value) was determined by counting how many sampled
sets of gene–SNP pairs had a lower median P-value than the
observed set.

Because the eQTL mapping and lymphocyte count GWAS
used different genotyping platforms, we allowed for a proxy
SNP to replace the paired (eQTL) SNP if it was not included
in the GWAS. To do so, we used SNAP (http://www.broa
dinstitute.org/mpg/snap/; 83), a web-based tool for identifying
proxy SNPs, to generate a list of all SNPs in LD (at an r2 ≥
0.5) with any of our eQTLs (r2 was based on HapMap LD, al-
though results using 1000 genomes-based LD were broadly
equivalent; data not shown). We chose the proxy SNPs with
the highest LD to the eQTL SNP; if several proxy SNPs
shared the same level of LD, we chose one at random to rep-
resent the eQTL SNP (see Supplementary Material, Fig. S7A
for distribution of r2 values for proxy SNPs chosen).

To extend our analysis to identify loci associated with asthma,
we used data from the GABRIEL meta-analysis (31). We
downloaded the genome-wide association P-values from the
GABRIEL website (http://www.cng.fr/gabriel/results.html).
We used the random-effects pooled P-values and excluded
any SNPs that were not analyzed in at least 25 of the 36
studies, resulting in the inclusion of 526 351 SNPs. We calcu-
lated the median P-value for the set of candidate genes identified
in our lymphocyte count GWAS, and assessed the significance
by permutation testing, using the remaining genes (using the
same approach described above). We again allowed for proxy
SNPs when the paired (eQTL) SNP was not present in the
GABRIEL data (Supplementary Material, Fig. S7B).

In order to replicate our observations from the GABRIEL
data set, we repeated the analysis using the results from the
EVE meta-analysis, an asthma study incorporating results
from GWAS conducted in several ethnically diverse North
American populations (32). We note that the studies included
in the EVE meta-analysis were entirely independent from
those included in the GABRIEL meta-analysis. We used the
results for combined meta-analysis incorporating all popula-
tions. Because the EVE study imputed SNPs using HapMap
data, this resulted in the inclusion of 2 340 251 SNPs in our
replication efforts. We proceeded by extending the same inte-
gration approach detailed for the lymphocyte count and
GABRIEL data to the EVE results [i.e. calculating the
median P-value for our candidate genes, allowing for proxy
SNPs to replace unrepresented eQTLs (Supplementary Mater-
ial, Fig. S7C), and assessing significance by permutation
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testing]. Five of the 10 239 genes were not represented by a
proxy SNP in the EVE data set and were therefore excluded
from the replication test.

Electronic database information. The gene expression data are
available at the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/) under series accession
number GSE30697.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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