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Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are
associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index
(BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the as-
sociation between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of
European descent from 22 cohorts collaborating with the NHLBI’s Candidate Gene Association Resource
(CARe) project. The study population consisted of women and men aged 20–80 years. Study participants
were genotyped using the ITMAT/Broad/CARE array, which includes ∼50 000 cosmopolitan tagged SNPs
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across∼2100cardiovascular-related genes.Eachtraitwasmodeledasa functionofage,study siteandprincipal
components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci
for WC were observed. For WHR analyses, three novel loci were significantly associated (P < 2.4 3 1026).
Previously unreported rs2811337-G near TMCC1 was associated with increased WHR (b+++++SE, 0.048+++++0.008,
P 5 7.7 3 1029) as was rs7302703-G in HOXC10 (b 5 0.044+++++0.008, P 5 2.9 3 1027) and rs936108-C in PEMT
(b 5 0.035+++++0.007, P 5 1.9 3 1026). Sex-stratified analyses revealed two additional novel signals among
females only, rs12076073-A in SHC1 (b 5 0.10+++++0.02, P 5 1.9 3 1026) and rs1037575-A in ATBDB4 (b 5
0.046+++++0.01, P 5 2.2 3 1026), supporting an already established sexual dimorphism of central adiposity-related
genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are
in regulatory regions or regions with differential expression in adipose tissue.

INTRODUCTION

Excess adiposity, especially central or visceral adiposity, is often
a precursor to cardiovascular disease (CVD), type 2 diabetes
(T2D) and cancer (1,2). The rising prevalence of obesity is be-
coming an increasing global concern (3,4). While major contri-
butors leading to obesity such as diet and nutrition need to be
further studied to inform better interventions, the biologic path-
ways that influence susceptibility to obesity are poorly under-
stood. In an attempt to identify underlying genetic variants that
affect adiposity traits and their distribution, many researchers
have performed genome-wide association studies (GWAS) (5).

While measurements of obesity such as body mass index
(BMI) and waist circumference (WC) represent a crude meas-
urement of adiposity, they have been shown to be highly asso-
ciated with cardiovascular disease-related outcomes and
mortality (1,6–9). In addition, measurements of the distribution
of adiposity such as waist-to-hip ratio (WHR), WC and visceral
adipose tissue (VAT) have been associated with these adverse
events, independent of BMI (10,11) indicating that WHR may
be capturing overlapping and/or different etiologic pathways
leading to poor health (12). Abdominal fat is thought to be
more metabolically active and has been shown to confer a
more adverse metabolic profile, in addition to increasing risk
of cancer (13–17).

Several studies have also shown high heritability of adiposity
measurements, indicating genetic contributions to variation in
fat deposition (18). One such adiposity measure, WHR, has
been shown to have �30–60% heritability (19,20) and shows
large variation by sex (21). Previous GWAS have successfully
highlighted a number of genetic loci and pathways that underpin
obesity (22). Although there have been numerous GWAS of ab-
dominal fat and adiposity-related traits (5,23–25), only one
large meta-analysis by Heid et al. (26) focused on WHR adjusted
for BMI (WHRadjBMI, henceforth referred to as WHR), which
identified 14 associated loci. Of the 14 loci associated with
WHR, 7 indicated heterogeneity by sex, and all 14 showed stron-
ger effects among females in comparison with males. These find-
ings are suggestive of distinct genetic effects on body shape and
argue for the importance of sex stratification in the interrogation
of genetic effects for adiposity-related traits.

Using meta-analysis, significant advancements have been
made in identifying genetic loci, although only a small portion
of the estimated heritability has to date been explained by the
identified loci. Only 1.03% of the variance in WHR could be
explained by the 14 loci identified by Heid et al. (26) from the

Genetic Investigation of Anthropometric Traits (GIANT)
WHR meta-analysis, indicating that the genetic contributions
have not been fully identified or explained (27).

In this study, we used the ITMAT/Broad/CARe (IBC) array,
designed to capture �50K SNPs across �2100 metabolic and
cardiovascular-related loci, with the majority of these loci cap-
tured at equal or greater density when compared with conven-
tional GWAS arrays (28). We employed this platform in a
large meta-analysis of European descent individuals in an
attempt to identify additional novel loci for WC and WHR and
further investigate loci that affect these phenotypes in a sex-
specific manner.

RESULTS

Population characteristics

A total of 22 studies, including 57 412 participants for WC ana-
lyses (49 380 for WHR analyses) of European descent met all cri-
teria and were included in this meta-analysis (Supplementary
Material, Tables S1–S3). The majority of participants were
female (63.6%), with a mean age ranging between 32 and 69
years of age. Mean anthropometry measurements were similar
between cohorts including WC, hip circumference (HC),
height, weight, WHR and BMI (Supplementary Material,
Table S2) with the exception of Look AHEAD which was
selected for obesity. WC and BMI measurements were consist-
ently higher among men in comparison with women in almost
all cohorts. HC was on average higher in females in comparison
with males amongst almost all cohorts (Supplementary Material,
Table S3).

Meta-analysis

Sex-combined results
The sex-combined meta-analysis revealed six loci that reached
array-wide significance (P , 2.4 × 1026) for WHR adjusted
for BMI (Table 1). Three loci were previously observed in the
GIANT WHR meta-analysis greater than genome-wide signifi-
cance thresholds: RSPO3, ADAMTS9 and ITPR2. SNPs
rs2811337 (inTMCC1), rs7302703 (downstream of HOXC10)
and rs936108 [in phosphatidylethanolamine N-methyltransferase
(PEMT)], which reached genome-wide or array-wide signifi-
cance (P ¼ 7.65 × 1029, 2.88 × 1027, and 1.9 × 1026, respect-
ively), however, have not been reported before for association
with WHR. The I2 values indicated mostly low levels of
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heterogeneity across studies. Regional association and Manhat-
tan plots of detected loci are provided in Supplementary Mater-
ial, Figures S1 and S2.

In addition to the WHR analysis, we conducted a
meta-analysis for WC and WC adjusted for BMI (WCadjBMI).
Loci significantly associated with WC were FTO and APOE, and
MFAP2 was significantly associated in this study with WC after
adjusting for BMI (Supplementary Material, Table S4).

Sex-specific associations
Given that WHR has been previously reported to have signifi-
cantly heterogeneous genetic effects by sex, we conducted a sex-
specific analysis in addition to our combined meta-analysis. The
female-only meta-analysis revealed two more array-wide sig-
nificant associations: rs12076073-A in SHC1 (frequency ¼
0.96) increased WHR by 0.101 units (SE ¼ 0.021) among
females (P ¼ 2.2 × 1026) and had a slight association with
WHR among males in the opposite direction (b ¼ 20.066+
0.032, P ¼ 0.040); and rs1037575-A in ATBDB4 (frequency ¼
0.79), which was associated with increased WHR in females
only (b ¼ 0.046+ 0.010, P ¼ 2.2 × 1026) (Table 2). In
males, the same allele had a null association with WHR
(b ¼ 20.002+ 0.014, P ¼ 0.89). No novel SNPs were identi-
fied in the male-specific meta-analysis for WHR (Table 3). Of
all array-wide significant SNPs, the magnitude of absolute
effect was stronger among females in comparison with males
except for the rs7302703 SHC1 signal.

Statistical tests for heterogeneity by sex
Of the three SNPs identified in the sex-combined meta-analysis,
two (rs7302703, downstream of HOXC10 and rs936108-PEMT)
had similar effect sizes in males and females. There was a larger
observed effect and stronger association among females
compared with males for rs2811337 (TMCC1), although a
Wald chi-square test for heterogeneity did not yield any statistic-
al evidence of differences between sexes (Pheterogeneity ¼ 0.29).
Of the signals observed in females only (rs12076073-SHC1 and
rs1037575-ATBDB4) the direction of effect was positive among
females with strong association levels with WHR, while in
comparison the direction of effect was negative for males with
low association with WHR. The Wald test for heterogeneity
was significant for both SNPs (Pheterogeneity ¼ 1.0 × 1025 and

0.01, respectively). The adjusted P-value allowing for hetero-
geneity by sex did not indicate an array-wide significant associ-
ation with WHR for rs1037575 (P ¼ 1.3 × 1025) but allowing
for heterogeneity by sex resulted in a stronger association for
rs12076073 (P ¼ 1.4 × 1026).

Corroboration of findings using the GIANT central
adiposity studies

Of the 14 significant WHR loci identified within the GIANT con-
sortium, five loci were represented on the IBC array, including
RSPO3, ADAMTS9 and ITPR2, which were array-wide signifi-
cant in this study. The GIANT index SNPs were different from
the sentinel SNPs from our analysis, but were in linkage disequi-
librium (LD) (r2 . 0.2) with one another in each of the three loci,
suggesting the SNPs are tagging the same causal variants. The
remaining two loci, LYPLAL1 and NISCH-STAB1, displayed
nominally significant associations (P ¼ 1.32 × 1025 and
0.0019, respectively) with WHR in our study (Supplementary
Material, Table S5) with both having an r2 .0.6 with the previ-
ous GIANT index signal.

To substantiate our five novel findings in other large European
descent populations, we attempted to corroborate our top signals
in the WHR association results from the GIANT study (26). Al-
though rs2811337 in TMCC1, rs730273 near HOXC10,
rs936108 in PEMT, rs12076073 in SHC1 and rs936108 in
PEMT were not genome-wide significant in GIANT, the effect
allele frequencies and the direction of effect were consistent
with our findings in both the sex-combined and sex-specific
results (Tables 1–3; Supplementary Material, Fig. S4a–e).
The observed significance was P ¼ 3.6 × 1023 for rs2811337,
P ¼ 0.067 for rs730273 and P ¼ 4.1 × 1023 for rs936108 in
the sex-combined GIANT results. Consistent with our find-
ings, rs12076073 in SHC1 showed a larger positive direction of
effect among females and no significant effect among males
(P ¼ 5.6 × 1024 and P ¼ 0.86, respectively). Also consistent
with our study, the A allele of rs1037575 (ATPBD4) was asso-
ciated with increased WHR in GIANT among females (P ¼
0.042) but not males (P ¼ 0.81). Although the HOXC10 locus
was not strictly corroborated in GIANT (P ¼ 0.067),
we include it in this table because of the consistent direction
of effect across the studies and noted the stronger effect

Table 1. IBC array-wide significant SNPs associated with WHR in individuals of European descent

Nearest gene Chr SNP Variant type CA IBC GIANT (26)
Na CAF Effect (SE) P-value I2b CAF Effect (SE) P-value

RSPO3 6 rs11154383 Flanking 5UTR G 42 927 0.29 0.047 (0.007) 3.0E210 27.1 0.29 0.034 (0.005) 1.3E210c

TMCC1 3 rs2811337 Intronic G 48 549 0.82 0.048 (0.008) 7.6E209 21.1 0.82 0.018 (0.006) 0.0036
ADAMTS9 3 rs4607103 Intronic C 42 936 0.75 0.044 (0.008) 2.4E208 1.2 0.75 0.023 (0.006) 4.3E205c

ITPR2 12 rs1049376 Untranslated C 46 717 0.26 0.041 (0.007) 5.6E208 0.0 0.27 0.029 (0.005) 7.6E208c

HOXC10 12 rs7302703 3′ downstream G 48 548 0.83 0.044 (0.008) 2.9E207 0.0 0.84 0.014 (0.008) 0.067
PEMT 17 rs936108 Intronic C 35 827 0.46 0.035 (0.007) 1.9E206 23.5 0.47 0.014 (0.005) 0.0041

Chr, chromosome; Pos, position; CA, coded allele; CAF, coded allele frequency; WHR, waist-to-hip ratio (adjusted for BMI, age, age2, center site and ancestry); SE,
standard error.
aApproximately 63.2% female (exact percentage depending on SNP).
bHeterogeneity statistic (58).
cThese three loci were previously reported by Heid et al. (2010)26 but the most significant SNPs for each locus in Heid et al. were rs9491696 for RSPO3 (P ¼ 1.8E240,
R2 ¼ 0.28 with rs11154383); rs6795735 for ADAMTS9 (P ¼ 9.8E214, R2 ¼ 0.27 with rs4607103) and rs718314 for ITPR2 (P ¼ 1.14E217; R2 ¼ 0.64 with
rs1049376). R2 (LD) was determined by 1000 Genomes Pilot 1 CEU.
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Table 2. IBC array-wide significant SNPs associated with WHR among females

Nearest gene Chr IBC GIANT, female (26)
SNP N CA CAF Effect (SE) P-value I2 SNPa R2b CA CAF Effect (SE) P-value

RSPO3 6 rs11154383 28 916 G 0.30 0.064 (0.009) 1.5E212 0.0 rs9491696 0.28 G 0.48 0.050 (0.004) 1.9E232
ADAMTS9 3 rs4607103 28 927 C 0.75 0.055 (0.010) 8.5E209 0.0 rs6795735 0.27 C 0.59 0.038 (0.005) 1.9E216
TMCC1 3 rs2811337 32 165 G 0.82 0.055 (0.010) 1.7E207 3.3 rs2811337 N/A G 0.82 0.038 (0.009) 1.1E205
ITPR2 12 rs1049376 31 254 C 0.26 0.046 (0.009) 3.8E207 0.0 rs718314 0.64 G 0.26 0.042 (0.005) 2.4E217
SHC1 1 rs12076073 30 191 A 0.96 0.101 (0.021) 1.9E206 0.0 rs12076073 N/A A 0.96 0.087 (0.025) 5.6E204
ATPBD4 15 rs1037575 31 255 A 0.79 0.046 (0.010) 2.2E206 0.0 rs1037575 N/A A 0.79 0.017 (0.008) 0.042

SNPs that were significant in sex combined analysis (Table 1) but did not reach significance in female-specific analysis
HOXC10 12 rs7302703 32 166 G 0.83 0.040 (0.010) 1.3E204 3.9 rs7302703 N/A G 0.84 0.007 (0.011) 0.52
PEMT 17 rs936108 24 807 C 0.46 0.037 (0.009) 4.4E205 38.9 rs936108 N/A C 0.47 0.020 (0.007) 3.2E203

Chr, chromosome; Pos, position; CA, coded allele; CAF, coded allele frequency; WHR, waist-to-hip ratio (adjusted for BMI, age, age2, center site and ancestry), SE, standard error.
aSame SNP used where available; otherwise closest proxy SNP was used (highest R2 in 1000 Genomes Pilot 1 CEU).
bR2 with IBC SNP in 1000 Genomes Pilot 1 CEU. The coding allele was selected based on consistency of MAF with the IBC SNP.

Table 3. SNPs associations and effects with WHR among males for SNPs that reached significance in the sex-combined and female-specific analyses

Nearest gene Chr IBC GIANT, male (26)
SNP N CA CAF Effect (SE) P-value I2 SNPa R2b CA CAF Effect (SE) P-value

SNPs that were significant in sex combined or female-specific analysis but did not reach significance in male-specific analysis
RSPO3 6 rs11154383 12 935 G 0.29 0.012 (0.014) 0.39 31.9 rs9491696 0.28 G 0.48 0.031 (0.005) 1.1E211
ADAMTS9 3 rs4607103 12 933 C 0.74 0.024 (0.014) 0.088 5.3 rs6795735 0.27 C 0.60 0.011 (0.005) 0.27
TMCC1 3 rs2811337 15 213 G 0.82 0.035 (0.015) 0.020 20.8 rs2811337 N/A G 0.83 20.002 (0.009) 0.79
ITPR2 12 rs1049376 15 211 C 0.26 0.025 (0.013) 0.057 0.0 rs718314 0.64 G 0.26 0.017 (0.005) 0.0014
SHC1 1 rs12076073 13 532 A 0.96 20.066 (0.032) 0.040 4.2 rs12076073 N/A A 0.97 20.004 (0.026) 0.86
ATPBD4 15 rs1037575 15 207 A 0.78 20.002 (0.014) 0.91 0.0 rs1037575 N/A A 0.79 0.002 (0.009) 0.81
HOXC10 12 rs7302703 15 211 G 0.83 0.058 (0.015) 1.3E204 0.0 rs7302703 N/A G 0.84 0.021 (0.011) 0.054
PEMT 17 rs936108 9026 C 0.47 0.035 (0.015) 0.018 22.5 rs936108 N/A C 0.47 0.011 (0.007) 0.13

Chr, chromosome; Pos, position; CA, coded allele; CAF, coded allele frequency; WHR, waist-to-hip ratio (adjusted for BMI, age, age2, center site and ancestry); SE, standard error.
aSame SNP used where available; otherwise closest proxy SNP was used (highest R2 in 1000 Genomes Pilot 1 CEU).
bR2 with IBC SNP in 1000 Genomes Pilot 1 CEU. The coding allele was selected based on consistency of MAF with the IBC SNP.
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among males in both the GIANT study and our study (Tables 2
and 3).

Shared genetic effects across other anthropometry
phenotypes

To describe potential shared or pleiotropic effects of our signifi-
cant WC, WCadjBMI and WHR signals on other anthropometric
traits, we examined effect sizes, standard errors and P-values for
the same SNPs across the anthropometric traits BMI, height,
WC, WCadjBMI and WHR both in sex-combined and in sex-
stratified groups.

The top three independent WC SNPs (in FTO, APOE and
CD19) were also associated with BMI in the sex-combined,
female-only and male-only meta-analyses (Pbinomial ¼ 1.25 ×
1024) and also showed consistency in the direction of effect.
However, none of the SNPs identified for WC were also asso-
ciated with WCadjBMI, height or WHR. The MFAP2 signal,
identified for WCadjBMI, was associated with height (P ,
0.05) but not with other anthropometric traits.

The six loci associated with WHR revealed a slightly more
complex pattern of shared effects across various anthropometry
phenotypes. In the sex-combined analyses, WHR signals were
also associated with WCadjBMI, height and BMI. Stratification
by sex indicated that the WHR signals may also have effects on
WCadjBMI among females with generally consistent directions
of effect. Among males, WHR signals may also have effects on
height but with the opposite direction of effect (Supplementary
Material, Tables S6–S8).

Pleiotropic effects across other CVD-related phenotypes

To the extent that the data were available, we investigated the
effects of our novel SNPs across cardiovascular-related pheno-
types published in other GWAS meta-analyses (Supplementary
Material, Table S9). Although there were a few nominally sig-
nificant P-values (between 0.03 and 0.05), none of the SNPs
replicated across the other phenotypes including height, blood
pressure, cholesterol, glucose levels, HOMA-B or HOMA-IR
after accounting for the number of tests.

An additional review of all variants in LD (r2 . 0.2) with
associated SNPs through the NIH GWAS catalog did not
reveal other central adiposity-related phenotypes such as
lipids, blood pressure, BMI and insulin resistance. The locus
on Chr17 has some very weak evidence of pleiotropy: the SNP
rs12936587 has previously been associated with coronary
artery disease (29), but the SNP shows low LD with our associ-
ation (r2 ¼ 0.26) and no evidence of association in imputation
analysis.

Functionality analysis of variants and genes in novel
associated loci

Network analysis
A network analysis of the extended LD (r2 . 0.2) region sur-
rounding the five novel reported loci, resulted in 22 genes
showing evidence of association. In order to evaluate the bio-
logical rationale of these 22 genes in adiposity, we used
genego metacore to evaluate them for direct interaction with
the 726 genes previously linked to adiposity and obesity in the

literature by Medical Subject Headings (MeSH) terms. Fourteen
genes in the five associated loci showed direct interaction with
genes previously linked to adiposity by MESH in a single
network of 631 directly interacting genes (Fig. 1). In the
network, 158 genes were defined as hubs, based on eight or
more interactions within the network, including SHC1, which
underlies one of our index adiposity SNP findings.

Functional analysis of the five novel loci
Several bioinformatic databases were queried to highlight var-
iants and genes of interest within the novel loci. The full
genomic context of the five novel loci reported here are shown
in Supplementary Material, Fig. S3a–e. The figures include
associated SNPs, LD relationships, imputation results, Encyclo-
pedia of DNA Elements (ENCODE) and tissue specific
RNA-seq data, including adipose tissue. Functional analysis of
all variants showing LD with associated SNPs is reported in Sup-
plementary Material, Table S12. All genes reported in the loci
are listed in Supplementary Material, Table S10. Of the five
novel loci with array-wide significance, all contained some evi-
dence to support involvement in adipogenic or obesogenic path-
ways, explained in more detail below.

Chromosome 1 locus analysis. The 185 kb LD region (r2 . 0.2)
surrounding the SNP rs12076073 includes KCNN3, CKS1B,
PMVK, FLAD1, PBXIP, ZBTB7B, SHC1, LENEP, DCST1 and
another microRNA precursor, mir4258. SHC1, containing this
index SNP, is involved in a complex network of gene and
protein pathways, and in our network analysis SHC1 is a hub
protein interacting with 17 other proteins in the obesity
network (Fig. 1). Review of published RNA-seq expression
data from adipose tissue shows that SHC1 is one of the most
highly adipose-expressed genes in the region (Supplementary
Materials, Fig. S3a). Additionally, the sentinel SNP is in com-
plete LD with a non-synonymous Met410Val variant
(rs8191979). Although this is a conservative amino acid substi-
tution which is predicted benign by Annovar analysis, the me-
thionine residue is conserved in all available mammalian
sequences. Seven other genes showed interaction with the
obesity MeSH network (PBXIP1, CKS1B, PMVK, FLAD1,
ZBTB7B, LENEP and DCST1); however, investigation of func-
tionality did not reveal any to be strong candidates in this region,
apart from PBXIP1 which may interact in known hyperglycemia
pathways.

Chromosome 3 locus analysis. The 342 kb LD region surround-
ing the SNP rs2811337 spans the genes TMCC1, PLXND1, TRH
and a hypothetical gene, LOC100507032. A review of ENCODE
information identified several variants with potential for regula-
tory impact. Biological literature resulting from pathway ana-
lysis implicates TRH in hypothyroidism and hyperglycemia.
No other gene in the region was an obvious obesity candidate
gene, although RNA-seq data identifies PLXND1 as the most
highly adipose expressed gene in the region (Supplementary Ma-
terial, Fig. S3b).

Chromosome 12 locus analysis. The 17 kb LD block surround-
ing the SNP rs7302703 encompasses a well-preserved family
of homeobox genes (HOXC9, HOXC10, HOXC8 and the
micro RNA precursor, mir196A2). A review of expression data
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for the genes within the region highlighted HOXC8 and HOXC9
in relation to adipose studies. Possible functionality of variants
across the region showing direct or indirect evidence of associ-
ation with adiposity indicated a variant within HOXC10 may in-
fluence regulation. The HOXC10 signal (rs7302703) is also in a
binding site of the second most highly connected hub in our
obesity network, the estrogen receptor (ESR1). Another variant
(rs12822416) 2.7 kb upstream of HOXC8 is also located in an
ESR1-binding site: this SNP is in strong LD (r2 ¼ 0.85) with
the index signal and also shows highly significant association
by imputation (P ¼ 1.65 × 1027).

Chromosome 15 locus analysis. The 202 kb LD region surround-
ing rs1037575 spans the ATPBD4 gene and its antisense tran-
script ATPBD4-AS1. Evaluation of ENCODE data finds strong
evidence to support rs1037575 as the most putative causal
variant in the region. The SNP is located in both CEBPB and
STAT3 transcription factor-binding sites and functional

disruption of ATPBD4 appears most likely at a transcriptional
level, via disruption of CEBPB and STAT3 transcription factor-
binding sites. As the rs1037575 association is female specific, we
reviewed DNase I data across 125 ENCODE cell types (derived
from both males and females), using the UCSC genome browser.
The only cell types showing DNase I hypersensitivity at the
rs1037575 locus were female derived, including HELA cells
(Cervical Carcinoma), HMEC (human mammary epithelial
cells) and GM12878-XiMat (B-lymphocytes derived from a
female subject). This information is not sufficient to conclusive-
ly support a sex-specific effect of rs1037575, but it does highlight
the locus as a candidate for further investigation. The CEBPB
and STAT3 genes were the third and fourth most highly con-
nected hubs in our obesity network.

Chromosome 17 locus analysis. The 133 kb LD region surround-
ing rs936108 spans the PEMT and an antisense transcript,
RP11-524F11.2. Analysis of associated variants identifies two

Figure 1. A medical subject headings (MESH)-defined obesity gene network including interacting genes reported in this study. GWAS genes reported here are indi-
cated by a red dot. Key network hubs connecting with GWAS genes including SHC1 are shown. The number of reported gene–gene interactions (‘edges’) is indicated
below the gene. All 631 genes are not shown for clarity; however, they are listed in Supplementary Materials, Table S11. Network was prepared using GeneGO meta-
core (Thomson Reuters).
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variants in the PEMT gene that may be of interest. First, rs897453
encodes a Val58Leu variant in the second transmembrane
domain of the protein. The variant is predicted benign in
impact and valine is not highly conserved at this position in
mammals. Secondly, ENCODE data indicates a strongly asso-
ciated SNP (rs750546, R2 ¼ 0.67 in 1000 Genomes CEU) with
a putative regulatory impact in an ESR1 binding site, linking
PEMT into our extended obesity network.

DISCUSSION

In a large meta-analysis of �2100 cardiovascular-related genes
in nearly 50 000 individuals of European descent from 22
cohorts, variation in 5 additional novel loci (3 in sex-combined
and 2 in sex-specific analyses) was associated with WHR. Con-
sistent with previous literature, analysis of the sexes separately
showed larger effects in females, with two loci only identifiable
in females. Association results, in silico corroboration efforts,
examination of the effect of identified variants on multiple an-
thropometric measures, network analysis, transcriptional ana-
lysis and biological plausibility suggest the identified genes
play a role in the biology of WHR.

Most of the heritability of central adiposity traits has yet to be
explained by variants identified through genetic meta-analyses
to date. Analysis conducted by Heid et al. (26), in the GIANT
(Genetic Investigation of Anthropometric Traits) consortium,
employing a genome-wide genotyping platform, identified loci
with strong adiposity-related phenotypic associations. The can-
didate gene-centric CARe IBC SNP array was designed before
the report by Heid et al. and thus did not explicitly include sub-
sequently index SNPs or loci unveiled for central adiposity.
Moreover, while their results were used as in silico corroboration
to validate our findings, it should be noted that either a fraction or
total number of participants in 7 of the 22 cohorts (up to 38% of
the individuals) included in the current study were also geno-
typed in GIANT. However, a different genotyping platform
was used in GIANT, and even with a different platform and dif-
ferent index SNPs for some loci, the GIANT GWAS results
showed consistency in the direction of effect with the IBC
array results. The forest plots (Supplementary Materials,
Fig. 4A-e) also demonstrate the lack of heterogeneity across
the studies used in this analysis, regardless of whether the
study was also part of GIANT. Thus, it does not appear that
the overlapping cohorts alone are driving the effects observed
in this analysis.

Despite its larger sample size, the effect sizes in GIANT were
smaller than those detected in the IBC discovery cohorts.
Varying LD patterns in different populations with lower LD
between the index SNP and the functional variant in some
studies could diminish the detected effect. Though corroboration
with GIANT findings substantiated our findings, further replica-
tion analyses will be needed to label our novel SNPs as lying
within established loci. The 14 loci identified in the GIANT
study explained 1.03% of the variance in WHR, and the 3
novel SNPs identified here in the sex-combined analysis
explain an additional 0.18% of variance. However, as we did
not conduct a two-stage study design, our effect estimates may
be inflated, though our large sample size would reduce such a
bias (30). The large sample size employed in our analysis also

resulted in the identification of a low frequency variant asso-
ciated with central adiposity [rs12076073 in SHC1 which has a
minor allele frequency (MAF) of �0.04].

Pleiotropic effects across other anthropometric and
CVD-related phenotypes

Comparison of our top identified SNPs across other anthropo-
metric traits suggests that many SNPs have shared effects
across multiple measures of anthropometry. Not surprisingly,
SNPs associated with WC were also associated with BMI,
affirming that the SNPs are capturing overall body size. The
WCadjBMI identified SNP in MFAP2 was originally identified
in a previous height GWAS study (31). It can be reasoned that
when WC, which is highly correlated with weight, is adjusted
for BMI, a composite measure of weight and height, the resulting
SNPs may capture the residual variances in height. This high-
lights the importance of understanding what aspects of anthro-
pometry are captured when using measures that are supposed
to be proxies of adiposity.

Potential biologic significance of newly discovered loci

There is growing evidence to indicate that non-coding regions of
the genome may have a regulatory function which can impact
disease phenotypes at a gene or pathway level (32). We have
taken advantage of the increased accessibility to large data sets
that have cataloged genetic regions with potential functionality,
allowing us to perform a comprehensive evaluation of the impact
of direct and indirectly associated variants on the adiposity
phenotype (32–34). By combining this with the rich structured
annotation afforded by MeSH (http://www.ncbi.nlm.nih.
gov/mesh/), we have been able to construct a conservative
network of direct gene interactions that have been reproducibly
linked to obesity in the literature. We carried out a network ana-
lysis of the 22 genes in the 5 novel loci reported here and found
that 14 genes interact in the obesity gene network presented.
These interactions are not enriched above the level expected
by chance (data not shown); however, at a qualitative level
they highlight a number of potential novel interactions with
known obesity-related pathways.

We found strongest evidence linking a gene to adiposity in the
chromosome 1 locus, with evidence for regulation of metabolic
and adipose transport pathways. Although the locus contains 10
genes, the Src homology 2 domain containing transforming
protein (SHC1) gene is a strong adiposity candidate. The gene
is one of the strongest functional candidates in the locus, based
on the association at a Met410Val variant, which although is a
conservative amino acid substitution predicted to be benign,
the methionine residue is conserved in all available mammalian
sequences. But perhaps most significantly, it is also a key hub in
the obesity MeSH network, indicating its potential role in the
regulation of metabolic and adipose pathways. Mice lacking
the SHC1 protein live longer and are leaner than wild-type
animals, suggesting that this molecule may have a role in meta-
bolic derangement and premature senescence by over-nutrition
(35). SHC1 is known to activate the insulin receptor, by
release of phospho-SHC, triggering a cascade of signaling
events via SOS, RAF and the MAP kinases (http://www.ncbi.
nlm.nih.gov/biosystems/106423) (36). The SHC1 gene also
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potentially represents a highly novel target opportunity in adi-
posity: Choi et al. (37) described 64 small molecule peptide
mimetic molecules with antagonistic-binding activity at SHC1
(full activities reported in ChEMBL). These molecules could
represent important tool compounds for functional studies of
SHC1 in animal models and could certainly represent a starting
point for further medicinal chemistry. In addition to the SHC1
gene, the literature from our functionality analysis shows that
the pre-B-cell leukemia homeobox interacting protein 1
(PBXIP1) gene within the chromosome 1 locus may also be rele-
vant, as it is known to interact with PBX1, which has develop-
mental roles in the pancreas and can affect hyperglycemia and
weight loss (38,39). However, considering the strong evidence
linking SHC1 to obesity we presently consider it the most
likely candidate in this region.

In the chromosome 3 locus, thyrotropin-releasing hormone
(TRH) is the most promising biological candidate with a role
in hypothyroidism in mouse models, which also affects pancreas
function, resulting in hyperglycemia (40). However, no strong
candidate functional variants were observed in TRH. Another
candidate in the region on the basis of functional variation is
transmembrane and coiled coil domain 1 (TMCC1), a variant
in which [rs12494774 (r2 ¼ 0.43)] is reported to mediate a
TMCC1 eQTL and is also located in a binding site for HNF4A
which showed substantial connectivity in the obesity MESH
network. The role of TMCC1 is largely unclear, although it
appears to function in cell signaling and cell regulation and has
homology to plectin proteins, which have been shown to be im-
portant during cytoskeletal remodeling in the adipogenesis (41).

In the chromosome 12 locus a cluster of HOX family genes
showed a range of support in adiposity, including altered expres-
sion in adipose tissue. Yamamoto et al. (42) reported differential
expression of both HOXC8 and HOXC9 in subcutaneous and
intra-abdominal adipose tissue. Fasting in both lean and ob/ob
mice systematically decreased the expression of HOXC8 but
produced only variable changes in the expression of other devel-
opmental and adipogenic genes. In a study of depot- and sex-
dependent differences in gene expression in human abdominal
and gluteal adipose tissues, Karastergiou et al. (43) reported dif-
ferential expression of many HOX genes between the abdominal
and gluteal depot, including highly significant down-regulation
of HOXC8 in the gluteal depot in both sexes. Several variants
across the region showed evidence of functional impact on
binding sites for the estrogen receptor (ESR1), possibly suggest-
ing a haplotype influence on the expression of multiple HOX
genes via an ESR1 mediated regulatory mechanism. Though
the results of observational studies have been mixed, studies
with model organisms indicate that ER-alpha has an effect on
obesity (ER-alpha is encoded by the gene ESR1 in humans).
ER-alpha knockout mice have been shown to develop increased
abdominal tissue, insulin resistance and glucose intolerance
(44,45). This mounting evidence for the association of adiposity
traits with the HOX cluster gene may indicate a combined influ-
ence of multiple HOX genes, possibly via a common regulatory
mechanism through ESR1. Several HOX genes, including
HOXC9 and HOXC8, are also known to dimerize with the
PBX1 protein described above (46). Finally, we note that
rs7302703 is downstream of HOXC10. The GIANT WHR
meta-analysis previously reported an SNP within HOXC13,
which is near HOXC10 but no LD is observed between the two

SNPs, indicating that these variants may be independent but
may function similarly on WHR.

Our final two loci reported have less clear established ration-
ale in adiposity, but may offer an important new insight into the
phenotype. In the chromosome 15 locus, ATPBD4, recently
identified as a diphthamide amidase, is a critical component of
the metabolic pathway targeted by diphtheria toxin and may
play a role in adiposity (47). Although pathway and literature-
based exploration of ATPBD4 and ATPBD4-AS1 has to date
not revealed any clear involvement in adipogenesis, the metabol-
ic role of the protein is still under investigation and the protein
family are known to act on a range of endogenous lipid messen-
gers, including oleamide and the endocannabinoid anandamide,
which are known to modulate a number of neurobehavioral pro-
cesses in mammals, including pain, sleep, feeding and locomotor
activity (48). We performed a structure-based evaluation of the
druggability of the ATPBD4 protein using the dogsitescorer
tool (49) and identified two potentially druggable-binding
pockets in the protein (data not shown). If further evidence is
found to support this gene in adiposity, it could represent a
highly novel therapeutic target. Finally in the chromosome 17
locus, we found a non-synonymous variant and a regulatory
variant that could mediate a role for PEMT gene in adiposity,
which is also supported by mouse knockout studies that have
demonstrated that PEMT-deficient mice are protected from
diet-induced obesity, supporting the likelihood that this gene
and, possibly the antisense transcript, may have a role(s) in adi-
posity (50).

In conclusion, our study has identified five novel signals asso-
ciated with WHR. Like previous studies, the effect size and
strength of association is larger among females for most of the
SNPs in comparison with males. Our investigation of the poten-
tial biological function of these novel loci suggest that many of
these SNPs play a functional role that may disrupt the biological
pathways that affect adiposity development.

MATERIALS AND METHODS

Studies

Studies with participants that had at least baseline anthropom-
etry measurements of European ancestry and typed using the
IBC array were invited to participate in the meta-analysis.
Twenty-two studies (15 population-based, 6 case–control and
1 randomized controlled trial) provided summary level data
for all SNPs on the IBC array. Detailed information regarding re-
cruitment and phenotype measurement methods are provided in
Supplementary Material, Table S1, and basic study level charac-
teristics including average age and average anthropometry mea-
surements of all 22 studies inclusive of CARe are outlined in
Supplementary Material, Tables S2–S3.

Phenotypic measurements

Individual studies
Individuals ,20 years of age were excluded. All waist-related
measurements were measured either by trained personnel or
health practitioners. WC and HC measurements were measured
in each participating cohort and were converted to centimeters as
necessary. WHR was calculated by dividing waist (cm) by hip
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(cm). Individuals provided informed consent according to each
of the contributing studies’ protocol. Individuals who did not
consent to genetic analyses were excluded.

Genotyping
All participants were genotyped using the ITMAT/Broad/CARE
(IBC) chip, which includes up to 49 240 cosmopolitan tagged
SNPs across �2100 candidate genes (28). As several of the
cohorts did not have imputed variants available, only directly
genotyped SNPs were included for the analysis. Quality
control of the genotypic data was maintained by removing
SNPs with call rates ,90% or not in Hardy–Weinberg equilib-
rium (P , 1 × 1026) and removing samples with call rates
,95%. An array-wide Bonferroni correction was applied taking
LD into account for the number of independent tests using
CEPH HapMap1 data (P ¼ 2.4 × 1026) (51), which has been
employed in a number of IBC meta-analyses to date (52–54).
Genotype imputation for a subset of the cohorts was performed
using the software MACH (55). HapMap phase 2 data sets
(www.hapmap.org) were used for the reference panel (build 36
release 22)consistingof CEU HapMap-phased haplotypes.Geno-
type imputation resulted in allelic-dosage data, representing the
expected number of copies of the minor allele a subject carries,
on �2.2 million autosomal SNPs. Imputation results were only
available for the six cohorts from the CARe consortium (ARIC,
CARDIA, CHS, MESA, CFS and FHS) and were used to investi-
gate regions around the top loci for functional analysis.

Statistical analysis

Regression analysis
Studies used genotype strand conversion scripts when applicable
to ensure uniform comparisons between studies in the
meta-analysis phase. Each study created the phenotype variable
by modeling WHR and WC as a function of age, age2, BMI
where applicable and center site (if the study was composed of
multiple centers) to create residuals. The residuals were then
regressed on each SNP and 10 principal components to
account for population stratification (principle components
identified with Eigenstrat or PLINK (56)). For each study we
assumed an additive genetic model and analyses were stratified
by sex and combined for joint analysis where possible.

Meta-analysis
We conducted a fixed-effect meta-analysis using the regression
results from each study with an inverse variance-weighted ap-
proach in METAL (57). Meta-analysis results were filtered to
remove monomorphic alleles and SNPs, and those with
missing strand information. Heterogeneity across studies was
quantified using the I2 statistic (58).

Sex-specific analysis
Given previous findings on sex dimorphism of the WHR trait, we
conducted a sex-specific analysis by running the meta-analysis
on males and females separately. Pheterogeneity values were calcu-
lated using a Wald chi-square test using the effect size (b) and
stand error (SE) specific to males (M) and females (F) to detect
heterogeneity driven by sex differences. A two degree of
freedom chi-square test was used to identify any significant
SNPs once allowing for the heterogeneity between sexes (59).

(1) Test for heterogeneity ¼ (bF − bM )2/(SE2
F + SE2

M ) ~ X 2
1 .

(2) Test allowing for heterogeneity ¼
(
bF/SEF)2 + (bM/

SEM )2 ~ X 2
2 .

Pleiotropic analysis

Shared genetic effects across other anthropometry phenotypes
To assess whether our strongest signals in each of our reference
phenotypes (WC, WCadjBMI or WHR) have effects across other
anthropometric phenotypes, we first examined the associations
of the same SNPs with other anthropometric phenotypes with
IBC array meta-analysis data (BMI, height, WC, WCadjBMI
and WHR). We then employed a binomial test to identify the
comparator phenotypes that indicate shared effects.

For the binomial test P-value calculation, we treated the
number of independent SNPs that were array-wide significant
with the reference phenotype as the number of tests. To ensure
the tests were independent, we selected only one SNP with
the strongest P-value from each independent locus. Of
those SNPs, the number of SNPs that also have a P-value of
,0.05 with the comparator phenotype was the number of ‘suc-
cesses’. We treated a binomial test resulting in a P-value of
,0.05 as significant.

Shared genetic effects across other CVD-related phenotypes
We investigated whether the five novel loci showed evidence of
association with related phenotypes using publicly available
data from the GIANT consortium [BMI (23) and height (31)];
the MAGIC consortium [fasting glucose, fasting insulin,
HOMA-B and HOMA-IR (60), and 2 h glucose (61)]; the
ICBP-GWAS consortium [(SBP and DBP) (62)] and a genome-
wide association scan for lipids [(HDL, LDL, triglycerides and
total cholesterol) (63)] and glycemic traits from www.ma
gicinvestigators.org. We reported the P-value for association
for the same SNP and also the direction of effect where available.

In addition, potential pleiotropic effects of all variants in LD
(r2 . 0.2) with the index SNPs were reviewed in the NIH
GWAS catalog (http://www.genome.gov/gwastudies/) pre-
sented in the UCSC genome browser (64).

Functional analyses

Investigation of potential functionality and biologic role of var-
iants and genes within resulting loci was evaluated based on
known gene annotations, literature information, pathway ana-
lysis and functional analysis of variants as described below.
Data collected from the bioinformatic methods described
below were used to make an overall qualitative assessment of
genes with the highest degree of support in adiposity-related
traits in the identified loci.

The extended locus around each index SNP was defined by
identification of all SNPs showing an r2 . 0.2, and a core
locus within this region was defined by SNPs showing r2 .
0.5. We used an inclusive strategy for our LD analysis, reviewing
all SNPs with r2 LD . 0.2. We used a low threshold for LD to
allow for weak LD that may exist between variants of widely dif-
fering allele frequencies, as might be expected between higher
frequency SNPs on genotyping panels and lower frequency
SNPs with potential for disease causality that are likely to be
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subject to negative selection pressure. We considered the more
widely used r2 . 0.5 as moderate to good evidence of LD,
again depending on the difference in allele frequencies. LD
was defined using the HaploReg tool which includes LD data
derived from Phase I of the 1000 genomes project. The full
genomic context of the loci defined by this process is shown in
Supplementary Material, Figure S3a–e and the genes are
listed in Supplementary Material, Table S10.

Network analysis: exploration of involvement in adiposity
related pathways
We undertook a comprehensive approach to investigate the in-
volvement of genes in associated loci with adiposity-related
traits. First, we performed a text mining approach, querying
genes in Medline with obesity and diabetes Medical subject
headings (MeSH). Next all 726 genes linked to obesity by
MeSH term were combined with the 22 genes present in the
five novel loci reported here. The combined list was used to
build a network of direct interactions in GeneGo (Supplementary
Material, Table S11).

Exploration of regulation and expression
Loci of interest were investigated at both the gene and variant
levels using a range of bioinformatics tools and databases. Var-
iants showing evidence of LD with associated variants were
explored for impact on gene function using ANNOVAR (65)
and regulatory function using a combination of HaploReg (34)
and Regulomedb (33), which both draw on comprehensive
data from the Encyclopedia of DNA Elements (ENCODE)
(32) and published eQTL studies. We mainly focused on three
functional elements provided through ENCODE. ChIP-seq pro-
vides information on transcription-factor-binding sites. DNase-
seq provides information on both transcription-factor-binding
sites and chromatin structure. FAIRE-seq provides information
on chromatin structure through exploitation of differences in
cross-linking efficiency of nucleosomes to regulatory factors.
Loci including ENCODE data and RNA-seq expression data
were visualized in the UCSC genome browser.

Pathway analysis
Genes showing evidence of association were reviewed for evi-
dence of involvement in adiposity at a pathway level using In-
genuity Pathway Analysis (Ingenuity Systems, Inc.) and
GeneGo Metacore (Thomson Reuters). By combining compre-
hensive data on gene and variant function we were able to build
up a view of genes with the highest level of support in WHR.

Druggability annotation and analysis
We annotated genes in loci of interest with information concern-
ing potential druggability, defined as the potential modulation of
a protein target by a water-soluble small molecule drug. Drug-
gable proteins usually contain a defined-binding pocket or
active site, which could act as a site of action (pharmacophore)
for a small molecule drug. We grouped proteins into four drugg-
ability classes based on a collation of complementary published
annotations of the potentially druggable genome and publically
available databases of small molecules (66–68). Targets in class 1
have a known drug recorded in drugbank (www.drugbank.ca);
class 2 have small molecules recorded in chembl (www.ebi.
ac.uk/chembl) and may be in current development within

pharmaceutical companies; class 3 are homologous to class 1
or class 2 targets; class 4 are predicted to contain a potentially
druggable pharmacophore based on de novo structure-based
druggability prediction using the dogsitescorer tool (dogsite.
zbh.uni-hamburg.de) (49).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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