Pael Receptor Induces Death of Dopaminergic Neurons in the Substantia Nigra via Endoplasmic Reticulum Stress and Dopamine Toxicity, which is Enhanced under Condition of Parkin Inactivation.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Generation of Parkin^{−/−} mice. (A) Schematic representation of the murine Parkin gene and design of the targeting vector. The region of the Parkin gene that includes proximal exon 3 is shown. Exon 3 (black box) was replaced with a neo cassette (PGK-neo) with two lox P sites (arrowheads). Locations of probes for Southern blot analysis and the sites of related restriction enzymes are indicated. DT-ApA indicates the location of the diphtheria toxin gene with a poly(A) sequence for negative selection. The expected sizes of fragments for the wild-type allele (W) or mutated allele (M) are indicated for digestion of genomic DNA with Hind III or Spe I/Sal I. (B) Southern blotting of representative tail DNA samples. DNA was digested with Hind III and hybridized with the 5’-probe from the Parkin gene. The 8.0-kb band is the wild-type (+) Parkin allele, and the 7.0-kb band represents the mutated allele (-), indicating that recombination has occurred. (C) RT-PCR for Parkin transcripts with the indicated primer pairs (A/B and C/D) in representative brain samples. ‘+’ and ‘-’ indicate the WT and the mutated allele in (b), respectively. PCR products with wild-type mouse Parkin cDNA as template were used as positive controls (PC). A schematic depiction of wild-type and mutant Parkin (∆Ex3) transcripts shows primer binding sites and the number of each exon (lower). M, DNA marker. RT-PCR analysis for Parkin transcripts confirmed the absence of normal transcripts in homozygous mutant mice. (D) RT-PCR products using primers A/B from (c) were cloned into a TA cloning vector, and then sequenced. Sequencing of RT-PCR products confirmed complete deletion of exon 3 and the presence of a frame-shift downstream of exon 2 in mutant mice. (E) Western blotting of whole brain samples with anti-Parkin antibody (Cell Signaling Technologies, Inc.) demonstrated lack of Parkin antigen.

Figure S2. SNpc neuron-specific cell death is induced by Pael-R. (A) Schematic presentation of major neurons connecting to the SNpc (1). The abbreviations used in this panels are as follows; GAD; glutamic acid decarboxylase, a marker protein for GABA neurons. (B) Adenoviral vectors including LoxEGFP (5x10⁸ p.f.u.), S2NPNCre (10⁹ p.f.u.), and LoxPael-R (10⁹ p.f.u.) were injected unilaterally into the striatum of Parkin^{−/−} mice (right panel), as described in Figure 3. As a control, the LoxPael-R vector was replaced with LoxLacZ (10⁹ p.f.u.) and injected on the contralateral
Expression of EGFP protein in the ipsilateral (left small panel) and contralateral striatum (right small panel) 10 days after infection is shown, along with a Nissl-stained slice (middle large panel). (C) Brain images corresponding to the lower panels of Figure 3F are shown. Animals were then perfusion fixed 5 days after injection, and midbrain sections were stained using antibody to activated caspase-3. Images corresponding the motor cortex (M1 and M2, +0.62 mm from the Bregma; left panel), striatum (+0.62 mm from the Bregma, middle panel), and SNpc (-3.52 mm from the Bregma; right panel) on the ipsilateral side were overlapped with EGFP (green) and activated caspase-3 (red) signal. The activated caspase-3 signal (red) is apparent in SNpc, suggesting that neuronal death by Pael-R is specific for dopaminergic neurons in the SNpc. Scale bars, 200 μm.

Figure S3. Decrease of TH signal is dependent on Pael-R expression.

(A) Adenoviral vectors (2 μl), including LoxEGFP (5x10^8 p.f.u.), S2NPNCre (10^9 p.f.u.) and LoxPael-R (10^9 p.f.u.) were injected unilaterally into the striatum of Parkin^+/+ mice (left panels) or Parkin^-/- mice (right panels), as described in Figure 3. As a control, where indicated, LoxPael-R was replaced by LoxLacZ (10^9 p.f.u.), and S2NPNCre + LoxLacZ was injected on the contralateral side. Brains of animals were then perfusion-fixed 10 days later, and midbrain sections were stained using anti-TH antibody. Images at -3.52 mm from the Bregma were obtained to visualize activated caspase-3 (red) and the EGFP signal (green). In each panel, areas indicated by arrowheads are magnified in insets shown in the lower corner. Note that TH signals (red) disappear in the EGFP-positive cells of the SNpc, especially with Pael-R expression (upper row of panels, arrowheads). Scale bar: 200 μm. All images shown in this figure are representative of six repeated experiments. (B) Low magnification images of Figure S3A (derived from Parkin^-/- mice, right two panels) were subjected to image intensity analysis using NIH image software. Relative intensity (0-256 grades) of EGFP (green) and TH (red) signals were measured and plotted in the right panels. The regions of interest (ROIs) are indicated by open stripes (M1-L1 and M2-L2). Intensity analysis demonstrated a marked increase in EGFP signal and a much lower TH signal, consequent to injection of the vector causing overexpresion of Pael-R (left panel). In contrast, there was considerable overlap of both signals when the control (LacZ) was injected (right panel). This suggests that SNpc neurons overexpressing Pael-R have reduced expression of TH antigen. (C) The percentage of TH-negative cells in EGFP-positive neurons was calculated in the ipsilateral (closed bars) or contralateral side (open bars) of either parkin knockout (lower panel) or wild-type littermates (upper panel) at the indicated time points after injection of adenoviral vectors. **denotes p<0.05 in each mouse genotype at day 5 (n=6, and the mean ± S.D. is shown).
Figure S4. Elevation of ORP150 level in Orp150 TG mice. Midbrain sections of either Orp150 TG mice or wild type littermates were subjected to immunohistochemical analysis using anti-TH (green) and anti-ORP150 antibody (red). A Nissl stained image is shown for orientation (A). The open box in panel A is magnified and shown in panel B, where the merged image of TH and ORP150 is shown. The open box in panel B was further magnified in panels C-E. Same analysis was performed in wild type littermates (panels F-J). Marker bars: 200 μm. SNpc; substantia nigra pars compacta, SNpr; substantia nigra pars reticulata.

Figure S5. Dopamine levels in Parkin−/− and Orp150+/− mice after AMPT treatment. AMPT-HCl (150 mg/kg, Sigma) was intra-peritoneally administrated twice per day for up to 12 days. At the indicated times, mice were sacrificed and DA content in the striatum was measured by HPLC-ED (2). n=6, mean ± S.D. is shown. ** denotes p<0.01 by multiple comparison analysis compared to day 0 (before AMPT treatment).

References

Figure S2. Kitao et al.

(A) Schematic diagram of the neural circuitry involving the Motor Cortex, Striatum, Thalamus, Brain Stem, and other brain regions. Key neurotransmitters and cellular markers are indicated: GABA (GAD(+)), Dopamine, Substance P, TH(+), and GAD(+).

(B) Images showing gene expression patterns in different regions. From left to right: S2NPNCre+LoxPael-R, Parkin^/-, and S2NPNCre+LoxLacZ.

(C) Close-up views of gene expression in Motor Cortex, Striatum, and SNpc (Substantia Nigra pars compacta). The images display EGFP/αCasp3/Merge staining patterns.

Interpeduncular nucleus, Locus coeruleus, Raphe nucleus (Pons) are also highlighted.
Figure S3/ Kitao et al.
Figure S4. Kitao et al.
Figure S5 / Kitao et al.